You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

ml-spectra-fitting

Package Overview
Dependencies
Maintainers
4
Versions
35
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-spectra-fitting - npm Package Compare versions

Comparing version

to
4.2.0

lib-esm/util/wrappers/directOptimization.d.ts

43

lib-esm/index.d.ts

@@ -38,2 +38,26 @@ import { DataXY, DoubleArray } from 'cheminfo-types';

declare type OptimizationParameter = number | ((peak: Peak) => number);
interface GeneralAlgorithmOptions {
/** number of max iterations
* @default 100
*/
maxIterations?: number;
}
export interface LMOptimizationOptions extends GeneralAlgorithmOptions {
/** maximum time running before break in seconds */
timeout?: number;
/** damping factor
* @default 1.5
*/
damping?: number;
/** error tolerance
* @default 1e-8
*/
errorTolerance?: number;
}
export interface DirectOptimizationOptions extends GeneralAlgorithmOptions {
epsilon?: number;
tolerance?: number;
tolerance2?: number;
initialState?: any;
}
export interface OptimizationOptions {

@@ -43,20 +67,5 @@ /**

*/
kind?: 'lm' | 'levenbergMarquardt';
kind?: 'lm' | 'levenbergMarquardt' | 'direct';
/** options for the specific kind of algorithm */
options?: {
/** maximum time running before break in seconds */
timeout?: number;
/** damping factor
* @default 1.5
*/
damping?: number;
/** number of max iterations
* @default 100
*/
maxIterations?: number;
/** error tolerance
* @default 1e-8
*/
errorTolerance?: number;
};
options?: DirectOptimizationOptions | LMOptimizationOptions;
}

@@ -63,0 +72,0 @@ export interface OptimizeOptions {

@@ -13,3 +13,3 @@ /**

const y = parameters[peak.fromIndex + 1];
for (let i = 2; i <= peak.toIndex; i++) {
for (let i = 2; i < parameters.length; i++) {
//@ts-expect-error Not simply to solve the issue

@@ -16,0 +16,0 @@ peak.shapeFct[peak.parameters[i]] = parameters[peak.fromIndex + i];

import { levenbergMarquardt } from 'ml-levenberg-marquardt';
import { OptimizationOptions } from '../index';
import { directOptimization } from './wrappers/directOptimization';
/** Algorithm to select the method.

@@ -10,8 +11,46 @@ * @param optimizationOptions - Optimization options

optimizationOptions: {
damping: number;
maxIterations: number;
errorTolerance: number;
} | {
epsilon?: number | undefined;
tolerance?: number | undefined;
tolerance2?: number | undefined;
initialState?: any;
maxIterations: number;
damping: number;
errorTolerance: number;
} | {
timeout?: number | undefined;
damping: number;
errorTolerance: number;
maxIterations: number;
errorTolerance: number;
};
} | {
algorithm: typeof directOptimization;
optimizationOptions: {
iterations: number;
epsilon: number;
tolerance: number;
tolerance2: number;
initialState: {};
} | {
epsilon: number;
tolerance: number;
tolerance2: number;
initialState: any;
maxIterations?: number | undefined;
iterations: number;
} | {
timeout?: number | undefined;
damping?: number | undefined;
errorTolerance?: number | undefined;
maxIterations?: number | undefined;
iterations: number;
epsilon: number;
tolerance: number;
tolerance2: number;
initialState: {};
};
};
//# sourceMappingURL=selectMethod.d.ts.map
import { levenbergMarquardt } from 'ml-levenberg-marquardt';
import { directOptimization } from './wrappers/directOptimization';
/** Algorithm to select the method.

@@ -20,2 +21,15 @@ * @param optimizationOptions - Optimization options

};
case 'direct': {
return {
algorithm: directOptimization,
optimizationOptions: {
iterations: 20,
epsilon: 1e-4,
tolerance: 1e-16,
tolerance2: 1e-12,
initialState: {},
...options,
},
};
}
default:

@@ -22,0 +36,0 @@ throw new Error(`Unknown fitting algorithm`);

@@ -38,2 +38,26 @@ import { DataXY, DoubleArray } from 'cheminfo-types';

declare type OptimizationParameter = number | ((peak: Peak) => number);
interface GeneralAlgorithmOptions {
/** number of max iterations
* @default 100
*/
maxIterations?: number;
}
export interface LMOptimizationOptions extends GeneralAlgorithmOptions {
/** maximum time running before break in seconds */
timeout?: number;
/** damping factor
* @default 1.5
*/
damping?: number;
/** error tolerance
* @default 1e-8
*/
errorTolerance?: number;
}
export interface DirectOptimizationOptions extends GeneralAlgorithmOptions {
epsilon?: number;
tolerance?: number;
tolerance2?: number;
initialState?: any;
}
export interface OptimizationOptions {

@@ -43,20 +67,5 @@ /**

*/
kind?: 'lm' | 'levenbergMarquardt';
kind?: 'lm' | 'levenbergMarquardt' | 'direct';
/** options for the specific kind of algorithm */
options?: {
/** maximum time running before break in seconds */
timeout?: number;
/** damping factor
* @default 1.5
*/
damping?: number;
/** number of max iterations
* @default 100
*/
maxIterations?: number;
/** error tolerance
* @default 1e-8
*/
errorTolerance?: number;
};
options?: DirectOptimizationOptions | LMOptimizationOptions;
}

@@ -63,0 +72,0 @@ export interface OptimizeOptions {

@@ -16,3 +16,3 @@ "use strict";

const y = parameters[peak.fromIndex + 1];
for (let i = 2; i <= peak.toIndex; i++) {
for (let i = 2; i < parameters.length; i++) {
//@ts-expect-error Not simply to solve the issue

@@ -19,0 +19,0 @@ peak.shapeFct[peak.parameters[i]] = parameters[peak.fromIndex + i];

import { levenbergMarquardt } from 'ml-levenberg-marquardt';
import { OptimizationOptions } from '../index';
import { directOptimization } from './wrappers/directOptimization';
/** Algorithm to select the method.

@@ -10,8 +11,46 @@ * @param optimizationOptions - Optimization options

optimizationOptions: {
damping: number;
maxIterations: number;
errorTolerance: number;
} | {
epsilon?: number | undefined;
tolerance?: number | undefined;
tolerance2?: number | undefined;
initialState?: any;
maxIterations: number;
damping: number;
errorTolerance: number;
} | {
timeout?: number | undefined;
damping: number;
errorTolerance: number;
maxIterations: number;
errorTolerance: number;
};
} | {
algorithm: typeof directOptimization;
optimizationOptions: {
iterations: number;
epsilon: number;
tolerance: number;
tolerance2: number;
initialState: {};
} | {
epsilon: number;
tolerance: number;
tolerance2: number;
initialState: any;
maxIterations?: number | undefined;
iterations: number;
} | {
timeout?: number | undefined;
damping?: number | undefined;
errorTolerance?: number | undefined;
maxIterations?: number | undefined;
iterations: number;
epsilon: number;
tolerance: number;
tolerance2: number;
initialState: {};
};
};
//# sourceMappingURL=selectMethod.d.ts.map

@@ -5,2 +5,3 @@ "use strict";

const ml_levenberg_marquardt_1 = require("ml-levenberg-marquardt");
const directOptimization_1 = require("./wrappers/directOptimization");
/** Algorithm to select the method.

@@ -24,2 +25,15 @@ * @param optimizationOptions - Optimization options

};
case 'direct': {
return {
algorithm: directOptimization_1.directOptimization,
optimizationOptions: {
iterations: 20,
epsilon: 1e-4,
tolerance: 1e-16,
tolerance2: 1e-12,
initialState: {},
...options,
},
};
}
default:

@@ -26,0 +40,0 @@ throw new Error(`Unknown fitting algorithm`);

{
"name": "ml-spectra-fitting",
"version": "4.1.1",
"version": "4.2.0",
"description": "Fit spectra using gaussian or lorentzian",

@@ -64,2 +64,3 @@ "main": "./lib/index.js",

"ml-array-max": "^1.2.4",
"ml-direct": "^0.1.1",
"ml-levenberg-marquardt": "^4.1.0",

@@ -66,0 +67,0 @@ "ml-peak-shape-generator": "^4.1.2",

@@ -45,2 +45,28 @@ import { DataXY, DoubleArray } from 'cheminfo-types';

interface GeneralAlgorithmOptions {
/** number of max iterations
* @default 100
*/
maxIterations?: number;
}
export interface LMOptimizationOptions extends GeneralAlgorithmOptions {
/** maximum time running before break in seconds */
timeout?: number;
/** damping factor
* @default 1.5
*/
damping?: number;
/** error tolerance
* @default 1e-8
*/
errorTolerance?: number;
}
export interface DirectOptimizationOptions extends GeneralAlgorithmOptions {
epsilon?: number;
tolerance?: number;
tolerance2?: number;
initialState?: any;
}
export interface OptimizationOptions {

@@ -50,21 +76,6 @@ /**

*/
kind?: 'lm' | 'levenbergMarquardt';
kind?: 'lm' | 'levenbergMarquardt' | 'direct';
/** options for the specific kind of algorithm */
options?: {
/** maximum time running before break in seconds */
timeout?: number;
/** damping factor
* @default 1.5
*/
damping?: number;
/** number of max iterations
* @default 100
*/
maxIterations?: number;
/** error tolerance
* @default 1e-8
*/
errorTolerance?: number;
};
options?: DirectOptimizationOptions | LMOptimizationOptions;
}

@@ -71,0 +82,0 @@

@@ -16,3 +16,3 @@ import { InternalPeak } from '../util/internalPeaks/getInternalPeaks';

const y = parameters[peak.fromIndex + 1];
for (let i = 2; i <= peak.toIndex; i++) {
for (let i = 2; i < parameters.length; i++) {
//@ts-expect-error Not simply to solve the issue

@@ -19,0 +19,0 @@ peak.shapeFct[peak.parameters[i]] = parameters[peak.fromIndex + i];

@@ -5,2 +5,4 @@ import { levenbergMarquardt } from 'ml-levenberg-marquardt';

import { directOptimization } from './wrappers/directOptimization';
/** Algorithm to select the method.

@@ -25,2 +27,15 @@ * @param optimizationOptions - Optimization options

};
case 'direct': {
return {
algorithm: directOptimization,
optimizationOptions: {
iterations: 20,
epsilon: 1e-4,
tolerance: 1e-16,
tolerance2: 1e-12,
initialState: {},
...options,
},
};
}
default:

@@ -27,0 +42,0 @@ throw new Error(`Unknown fitting algorithm`);

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet