New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

optimization-js

Package Overview
Dependencies
Maintainers
1
Versions
9
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

optimization-js

Mathematical optimization in JavaScript.

  • 1.5.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

Mathematical Optimization in JavaScript

Travis build Codecov branch Inline docs npm npm npm semantic-release GitHub license

A javascript library implementing useful multivariate function optimization procedures, which allow to find a local minimum of some function of a vector argument. Such argument is a javascript array.

Example

Example zero order optimization in JavaScript (no need to provide gradient information!):

 <script src="./optimization.js"></script>
 <script>
 
// objective that needs to be minimized
fnc = function (v) {
  var result = 0.0;
  for (var i = 0; i < v.length; i++){
    result = result + v[i] * v[i]
  }
  return result;
};

var x0 = [1.0, -1.0, 0.5, -0.5, 0.25, -0.25]; // a somewhat random initial vector

// Powell method can be applied to zero order unconstrained optimization
var solution = optimjs.minimize_Powell(fnc, x0);

</script>

For more examples, check out examples folder.

Usage

For use in browser, use this:

<script src="https://unpkg.com/optimization-js@latest/dist/optimization.js"></script>

In order to use this in node, use npm:

npm install optimization-js

Documentation

Documentation is hosted on github pages here: http://optimization-js.github.io/optimization-js/.

Available algorithms:

Gradient free:

  • Genetic optimization algorithms Useful when your function takes as input arguments of mixed type, such as categorical and numerical values.
  • Variation of Powell zero order minimization method. Very useful method for prototyping. Typically works decently for problems with 100 - 1000 variables (vector argument size).

Requires gradient:

  • Limited memory Broyden–Fletcher–Goldfarb–Shanno method (L-BFGS). Very popular and powerful minimization algorithm. Uses approximation to the Hessian based on recorded gradients over the last m function evaluations. Involves numerical division, and because of this can be unstable, so use at your own risk.
  • Vanilla gradient descent. Performs gradient descent using user provided function and its gradient. Can be used instead of L-BFGS in case the latter is unstable on your problem.

See JavaScript files in examples folder for examples on how to use the algorithms.

Keywords

FAQs

Package last updated on 13 Oct 2018

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc