Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
quick-pivot
Advanced tools
Say you have this example data set:
With this tool you can pivot the data given a particular row and column category:
Or given multiple rows and a column category:
Or multiple columns and a row category:
Or any combination of rows and/or columns
Install with npm:
npm install --save quick-pivot
import Pivot from 'quick-pivot';
const dataArray = [
['name', 'gender', 'house', 'age'],
['Jon', 'm', 'Stark', 14],
['Arya', 'f', 'Stark', 10],
['Cersei', 'f', 'Baratheon', 38],
['Tywin', 'm', 'Lannister', 67],
['Tyrion', 'm', 'Lannister', 34],
['Joffrey', 'm', 'Baratheon', 18],
['Bran', 'm', 'Stark', 8],
['Jaime', 'm', 'Lannister', 32],
['Sansa', 'f', 'Stark', 12]
];
const rowsToPivot = ['name'];
const colsToPivot = ['house', 'gender'];
const aggregationDimension = 'age';
const aggregator = 'sum';
const pivot = new Pivot(dataArray, rowsToPivot, colsToPivot, aggregationDimension, aggregator);
console.log('pivot.data', pivot.data, 'pivot.data.table', pivot.data.table);
console logs:
pivot.data
{ table:
[ { value: [Object], depth: 0, type: 'colHeader', row: 0 },
{ value: [Object], depth: 1, type: 'colHeader', row: 1 },
{ value: [Object], type: 'data', depth: 0, row: 2 },
{ value: [Object], type: 'data', depth: 0, row: 3 },
{ value: [Object], type: 'data', depth: 0, row: 4 },
{ value: [Object], type: 'data', depth: 0, row: 5 },
{ value: [Object], type: 'data', depth: 0, row: 6 },
{ value: [Object], type: 'data', depth: 0, row: 7 },
{ value: [Object], type: 'data', depth: 0, row: 8 },
{ value: [Object], type: 'data', depth: 0, row: 9 },
{ value: [Object], type: 'data', depth: 0, row: 10 },
{ value: [Object], type: 'aggregated' } ],
rawData:
[ { value: [Object], depth: 0, type: 'colHeader', row: 0 },
{ value: [Object], depth: 1, type: 'colHeader', row: 1 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 },
{ value: [Object], type: 'data', depth: 0 } ] }
pivot.data.table
[ { value:
[ 'sum age',
'Stark',
'Stark',
'Baratheon',
'Baratheon',
'Lannister',
'Totals' ],
depth: 0,
type: 'colHeader',
row: 0 },
{ value: [ 'sum age', 'f', 'm', 'f', 'm', 'm', '' ],
depth: 1,
type: 'colHeader',
row: 1 },
{ value: [ 'Arya', 10, '', '', '', '', 10 ],
type: 'data',
depth: 0,
row: 2 },
{ value: [ 'Bran', '', 8, '', '', '', 8 ],
type: 'data',
depth: 0,
row: 3 },
{ value: [ 'Cersei', '', '', 38, '', '', 38 ],
type: 'data',
depth: 0,
row: 4 },
{ value: [ 'Jaime', '', '', '', '', 32, 32 ],
type: 'data',
depth: 0,
row: 5 },
{ value: [ 'Joffrey', '', '', '', 18, '', 18 ],
type: 'data',
depth: 0,
row: 6 },
{ value: [ 'Jon', '', 14, '', '', '', 14 ],
type: 'data',
depth: 0,
row: 7 },
{ value: [ 'Sansa', 12, '', '', '', '', 12 ],
type: 'data',
depth: 0,
row: 8 },
{ value: [ 'Tyrion', '', '', '', '', 34, 34 ],
type: 'data',
depth: 0,
row: 9 },
{ value: [ 'Tywin', '', '', '', '', 67, 67 ],
type: 'data',
depth: 0,
row: 10 },
{ value: [ 'Totals', 22, 22, 38, 18, 133, '' ], type: 'aggregated' } ]
data
valueThe data
value returns an object with keys table
and rawData
. table
is an array of objects with each object containing four keys (except for the last object which is an aggregated row of all the previous data rows based on the selected aggregation function):
value
- Array which contains the result of the pivot to be renderedtype
- Enumerated string describing what this data row contains, [data
, rowHeader
, or colHeader
]depth
- Number describing how deeply nested the row is within a parent rowrow
- Number describing the original row index within the tablerawData
is an array of objects with three keys:
value
- Array which contains the data that makes up that particular rowtype
- Enumerated string describing what this data row contains, [data
, rowHeader
, or colHeader
]depth
- Number describing how deeply nested the row is within a parent rowNote: If modules are not supported in your environment, you can also require var Pivot = require('quick-pivot');
import Pivot from 'quick-pivot';
const pivot = new Pivot(dataArray, rows, columns, [aggregationDimension or CBfunction], [aggregator or initialValue], rowHeader, sortFunction, columnSortFunction);
dataArray
required is one of the following:
rows
is an array of strings (the rows you want to pivot on) or an empty array requiredcolumns
is an array of strings (the columns you want to pivot on) or an empty array requiredaggregationDimension
is a string (the category you want to accumulate values for) requiredaggregator
is an enumerated string - either 'sum'
, 'count'
, 'min'
, 'max'
, or 'average'
(the type of accumulation you want to perform). If no type is selected, 'count'
is chosen by defaultrowHeader
is a string (this value will appear above the rows)sortFunction
is a custom sorting function for rows. Default sorting used if null
(row) => (a,b) => Number
. This Function will be called for each row pivoted on (right to left) and must return
a traditional Array.sort function as a result.
A Function equaling () => {}
will direct the Pivot to skip the sorting phase.columnSortFunction
is a custom sorting function for columns. No sorting used if undefined
(data, columns, columnIndex) => (a,b) => Number
. This Function will be called for each column pivoted on and must return
a traditional Array.sort function as a result.Parameters are the same as the first except for two, aggregationDimension
and aggregator
. Instead of aggregationDimension
and aggregator
, you can use the following:
CBfunction
is a callback function that receives four parameters CBfunction(acc, curr, index, arr)
where acc
is an accumulation value, curr
is the current element being processed, index
is the index of the current element being processed and arr
is the array that is being acted on. This function must return the accumulation value (this is very similar to javascript's .reduce
) requiredinitialValue
is the starting value for the callback function. If no starting value is selected, 0
is used by default..data
Instance variable that returns the data array shown above
.update(dataArray, rows, columns, [aggregationDimension or CBfunction], [aggregator or initialValue], rowHeader)
Updates the .data
instance variable. The update
method is chainable.
.collapse(rowNum)
Collapses data into the specified row header provided. rowNum
is the row header's current index within the table (Not the original row index that is provided in the object). The collapse
method is chainable
.expand(rowNum)
Expands collapsed data that has previously been collapsed. The expand
method is chainable.
.collapseAll()
Collapses all data. The collapseAll
method is chainable.
.expandAll()
Expands all data. The expandAll
method is chainable.
.toggle(rowNum)
Toggles data from collapsed to expanded or vice-versa. The toggle
method is chainable.
.getData(rowNum)
Returns the data that comprises a collapsed row
.getUniqueValues(fieldName)
Returns all the unique values for a particular field as an array
.filter([fieldName or CBfunction], filterValues, [filterType])
Filters out values based on either:
fieldName
field to filter on, array filterValues
values to filter, string filterType
optional enumerated string either 'include'
or 'exclude'
(defaults to exclude if not provided)CBfunction(element, index, array)
which iterates over each element in array (similar to Javascript array .filter
method)Check out the test spec for more examples.
import Pivot from 'quick-pivot';
function cbFunc(acc, curr, index, arr){
acc += curr.age;
if(index === arr.length - 1) return acc / arr.length;
return acc;
}
const pivot = new Pivot(dataArray, ['gender'], ['house'], cbFunc, 0, 'average age');
console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'Totals' ],
depth: 0,
type: 'colHeader',
row: 0 },
{ value: [ 'f', 11, 38, '', 20 ], type: 'data', depth: 0, row: 1 },
{ value: [ 'm', 11, 18, 44.333333333333336, 28.833333333333332 ],
type: 'data',
depth: 0,
row: 2 },
{ value: [ 'Totals', 11, 28, 44.333333333333336, '' ],
type: 'aggregated' } ]
*/
pivot.update(dataArray, ['gender', 'name'], ['house'], cbFunc, 0, 'average age')
console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'Totals' ],
depth: 0,
type: 'colHeader',
row: 0 },
{ value: [ 'f', 11, 38, '', '' ],
depth: 0,
type: 'rowHeader',
row: 1 },
{ value: [ 'Arya', 10, '', '', 10 ],
type: 'data',
depth: 1,
row: 2 },
{ value: [ 'Cersei', '', 38, '', 38 ],
type: 'data',
depth: 1,
row: 3 },
{ value: [ 'Sansa', 12, '', '', 12 ],
type: 'data',
depth: 1,
row: 4 },
{ value: [ 'm', 11, 18, 44.333333333333336, '' ],
depth: 0,
type: 'rowHeader',
row: 5 },
{ value: [ 'Bran', 8, '', '', 8 ],
type: 'data',
depth: 1,
row: 6 },
{ value: [ 'Jaime', '', '', 32, 32 ],
type: 'data',
depth: 1,
row: 7 },
{ value: [ 'Joffrey', '', 18, '', 18 ],
type: 'data',
depth: 1,
row: 8 },
{ value: [ 'Jon', 14, '', '', 14 ],
type: 'data',
depth: 1,
row: 9 },
{ value: [ 'Tyrion', '', '', 34, 34 ],
type: 'data',
depth: 1,
row: 10 },
{ value: [ 'Tywin', '', '', 67, 67 ],
type: 'data',
depth: 1,
row: 11 },
{ value: [ 'Totals', 11, 28, 44.333333333333336, '' ],
type: 'aggregated' } ]
*/
pivot.collapse(1);
console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'Totals' ],
depth: 0,
type: 'colHeader',
row: 0 },
{ value: [ 'f', 11, 38, '', '' ],
depth: 0,
type: 'rowHeader',
row: 1 },
{ value: [ 'm', 11, 18, 44.333333333333336, '' ],
depth: 0,
type: 'rowHeader',
row: 5 },
{ value: [ 'Bran', 8, '', '', 8 ],
type: 'data',
depth: 1,
row: 6 },
{ value: [ 'Jaime', '', '', 32, 32 ],
type: 'data',
depth: 1,
row: 7 },
{ value: [ 'Joffrey', '', 18, '', 18 ],
type: 'data',
depth: 1,
row: 8 },
{ value: [ 'Jon', 14, '', '', 14 ],
type: 'data',
depth: 1,
row: 9 },
{ value: [ 'Tyrion', '', '', 34, 34 ],
type: 'data',
depth: 1,
row: 10 },
{ value: [ 'Tywin', '', '', 67, 67 ],
type: 'data',
depth: 1,
row: 11 },
{ value: [ 'Totals', 11, 28, 44.333333333333336, '' ],
type: 'aggregated' } ]
*/
console.log(pivot.getData(1));
/*
[ { value: [ 'Arya', [Array], '', '' ], type: 'data', depth: 1 },
{ value: [ 'Cersei', '', [Array], '' ], type: 'data', depth: 1 },
{ value: [ 'Sansa', [Array], '', '' ], type: 'data', depth: 1 } ]
*/
console.log(pivot.getData(1)[0].value)
/*
[ 'Arya',
[ { name: 'Arya', gender: 'f', house: 'Stark', age: 10 } ],
'',
'' ]
*/
pivot.collapse(2);
console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'Totals' ],
depth: 0,
type: 'colHeader',
row: 0 },
{ value: [ 'f', 11, 38, '', '' ],
depth: 0,
type: 'rowHeader',
row: 1 },
{ value: [ 'm', 11, 18, 44.333333333333336, '' ],
depth: 0,
type: 'rowHeader',
row: 5 },
{ value: [ 'Totals', 11, 28, 44.333333333333336, '' ],
type: 'aggregated' } ]
*/
pivot.expand(1);
console.log(pivot.data.table);
/*
[ { value: [ 'average age', 'Stark', 'Baratheon', 'Lannister', 'Totals' ],
depth: 0,
type: 'colHeader',
row: 0 },
{ value: [ 'f', 11, 38, '', '' ],
depth: 0,
type: 'rowHeader',
row: 1 },
{ value: [ 'Arya', 10, '', '', 10 ],
type: 'data',
depth: 1,
row: 2 },
{ value: [ 'Cersei', '', 38, '', 38 ],
type: 'data',
depth: 1,
row: 3 },
{ value: [ 'Sansa', 12, '', '', 12 ],
type: 'data',
depth: 1,
row: 4 },
{ value: [ 'm', 11, 18, 44.333333333333336, '' ],
depth: 0,
type: 'rowHeader',
row: 5 },
{ value: [ 'Totals', 11, 28, 44.333333333333336, '' ],
type: 'aggregated' } ]
Check out the change log
FAQs
a utility for quickly pivoting data
The npm package quick-pivot receives a total of 760 weekly downloads. As such, quick-pivot popularity was classified as not popular.
We found that quick-pivot demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.