Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

red-black-tree-typed

Package Overview
Dependencies
Maintainers
1
Versions
62
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

red-black-tree-typed - npm Package Compare versions

Comparing version 1.48.1 to 1.48.2

dist/data-structures/base/index.d.ts

103

dist/data-structures/binary-tree/binary-tree.d.ts

@@ -9,4 +9,5 @@ /**

import type { BinaryTreeNodeNested, BinaryTreeOptions, BTNCallback, BTNKey, BTNodeEntry, BTNodeExemplar, BTNodeKeyOrNode } from '../../types';
import { BinaryTreeNested, BinaryTreePrintOptions, BiTreeDeleteResult, DFSOrderPattern, FamilyPosition, IterationType, NodeDisplayLayout } from '../../types';
import { BinaryTreeNested, BinaryTreePrintOptions, BiTreeDeleteResult, DFSOrderPattern, FamilyPosition, IterationType, NodeDisplayLayout, PairCallback } from '../../types';
import { IBinaryTree } from '../../interfaces';
import { IterablePairBase } from "../base";
/**

@@ -45,3 +46,3 @@ * Represents a node in a binary tree.

*/
export declare class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode<V, BinaryTreeNodeNested<V>>, TREE extends BinaryTree<V, N, TREE> = BinaryTree<V, N, BinaryTreeNested<V, N>>> implements IBinaryTree<V, N, TREE> {
export declare class BinaryTree<V = any, N extends BinaryTreeNode<V, N> = BinaryTreeNode<V, BinaryTreeNodeNested<V>>, TREE extends BinaryTree<V, N, TREE> = BinaryTree<V, N, BinaryTreeNested<V, N>>> extends IterablePairBase<BTNKey, V | undefined> implements IBinaryTree<V, N, TREE> {
iterationType: IterationType;

@@ -473,27 +474,2 @@ /**

*
* The function "keys" returns an array of keys from a given object.
* @returns an array of BTNKey objects.
*/
keys(): BTNKey[];
/**
* Time complexity: O(n)
* Space complexity: O(n)
*/
/**
* Time complexity: O(n)
* Space complexity: O(n)
*
* The function "values" returns an array of values from a map-like object.
* @returns The `values()` method is returning an array of values (`V`) from the entries in the
* object.
*/
values(): (V | undefined)[];
/**
* Time complexity: O(n)
* Space complexity: O(n)
*/
/**
* Time complexity: O(n)
* Space complexity: O(n)
*
* The `clone` function creates a new tree object and copies all the nodes from the original tree to

@@ -505,52 +481,42 @@ * the new tree.

/**
* Time complexity: O(n)
* Space complexity: O(1)
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* The `forEach` function iterates over each entry in a tree and calls a callback function with the
* entry and the tree as arguments.
* @param callback - The callback parameter is a function that will be called for each entry in the
* tree. It takes two parameters: entry and tree.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new tree by iterating over the elements of the current tree and
* adding only the elements that satisfy the given predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `value`,
* `key`, and `index`. It should return a boolean value indicating whether the pair should be
* included in the filtered tree or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as the `this` value when executing the `predicate` function. If `thisArg` is provided,
* it will be passed as the first argument to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new tree object that contains the key-value pairs that
* pass the given predicate function.
*/
forEach(callback: (entry: [BTNKey, V | undefined], tree: this) => void): void;
filter(predicate: PairCallback<BTNKey, V | undefined, boolean>, thisArg?: any): TREE;
/**
* The `filter` function creates a new tree by iterating over the entries of the current tree and
* adding the entries that satisfy the given predicate.
* @param predicate - The `predicate` parameter is a function that takes two arguments: `entry` and
* `tree`.
* @returns The `filter` method is returning a new tree object that contains only the entries that
* satisfy the given predicate function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
filter(predicate: (entry: [BTNKey, V | undefined], tree: this) => boolean): TREE;
/**
* The `map` function creates a new tree by applying a callback function to each entry in the current
* tree.
* @param callback - The callback parameter is a function that takes two arguments: entry and tree.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new tree by applying a callback function to each key-value pair in
* the original tree.
* @param callback - The callback parameter is a function that will be called for each key-value pair
* in the tree. It takes four arguments: the value of the current pair, the key of the current pair,
* the index of the current pair, and a reference to the tree itself. The callback function should
* return a new
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If you pass a value for `thisArg`, it
* will be used as the `this` value when the callback function is called. If you don't pass a value
* @returns The `map` method is returning a new tree object.
*/
map(callback: (entry: [BTNKey, V | undefined], tree: this) => V): TREE;
map(callback: PairCallback<BTNKey, V | undefined, V>, thisArg?: any): TREE;
/**
* The `reduce` function iterates over the entries of a tree and applies a callback function to each
* entry, accumulating a single value.
* @param callback - The callback parameter is a function that takes three arguments: accumulator,
* entry, and tree. It is called for each entry in the tree and is used to accumulate a single value
* based on the logic defined in the callback function.
* @param {T} initialValue - The initialValue parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the callback function when reducing the
* elements of the tree.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the entries in the tree and applying the callback function to each entry.
*/
reduce<T>(callback: (accumulator: T, entry: [BTNKey, V | undefined], tree: this) => T, initialValue: T): T;
/**
* The above function is an iterator for a binary tree that can be used to traverse the tree in
* either an iterative or recursive manner.
* @param node - The `node` parameter represents the current node in the binary tree from which the
* iteration starts. It is an optional parameter with a default value of `this.root`, which means
* that if no node is provided, the iteration will start from the root of the binary tree.
* @returns The `*[Symbol.iterator]` method returns a generator object that yields the keys of the
* binary tree nodes in a specific order.
*/
[Symbol.iterator](node?: N | null | undefined): Generator<[BTNKey, V | undefined], void, undefined>;
/**
* The `print` function is used to display a binary tree structure in a visually appealing way.

@@ -563,2 +529,3 @@ * @param {BTNKey | N | null | undefined} [beginRoot=this.root] - The `root` parameter is of type `BTNKey | N | null |

print(beginRoot?: BTNodeKeyOrNode<N>, options?: BinaryTreePrintOptions): void;
protected _getIterator(node?: N | null | undefined): IterableIterator<[BTNKey, V | undefined]>;
protected _displayAux(node: N | null | undefined, options: BinaryTreePrintOptions): NodeDisplayLayout;

@@ -565,0 +532,0 @@ protected _defaultOneParamCallback: (node: N) => number;

import type { DijkstraResult, VertexKey } from '../../types';
import { PairCallback } from "../../types";
import { IGraph } from '../../interfaces';
import { IterablePairBase } from "../base";
export declare abstract class AbstractVertex<V = any> {

@@ -31,3 +33,4 @@ key: VertexKey;

}
export declare abstract class AbstractGraph<V = any, E = any, VO extends AbstractVertex<V> = AbstractVertex<V>, EO extends AbstractEdge<E> = AbstractEdge<E>> implements IGraph<V, E, VO, EO> {
export declare abstract class AbstractGraph<V = any, E = any, VO extends AbstractVertex<V> = AbstractVertex<V>, EO extends AbstractEdge<E> = AbstractEdge<E>> extends IterablePairBase<VertexKey, V | undefined> implements IGraph<V, E, VO, EO> {
constructor();
protected _vertices: Map<VertexKey, VO>;

@@ -447,7 +450,42 @@ get vertices(): Map<VertexKey, VO>;

getBridges(): EO[];
[Symbol.iterator](): Iterator<[VertexKey, V | undefined]>;
forEach(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => void): void;
filter(predicate: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => boolean): [VertexKey, V | undefined][];
map<T>(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T): T[];
reduce<T>(callback: (accumulator: T, entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T, initialValue: T): T;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates over key-value pairs in a data structure and returns an array of
* pairs that satisfy a given predicate.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It is used to determine whether an element should be included
* in the filtered array. The callback function should return `true` if the element should be
* included, and `
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method returns an array of key-value pairs `[VertexKey, V | undefined][]`
* that satisfy the given predicate function.
*/
filter(predicate: PairCallback<VertexKey, V | undefined, boolean>, thisArg?: any): [VertexKey, V | undefined][];
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function iterates over the elements of a collection and applies a callback function to
* each element, returning an array of the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* map. It takes four arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If `thisArg` is provided, it will be
* used as the `this` value when calling the callback function. If `thisArg` is not provided, `
* @returns The `map` function is returning an array of type `T[]`.
*/
map<T>(callback: PairCallback<VertexKey, V | undefined, T>, thisArg?: any): T[];
protected _getIterator(): IterableIterator<[VertexKey, V | undefined]>;
protected abstract _addEdgeOnly(edge: EO): boolean;

@@ -454,0 +492,0 @@ protected _addVertexOnly(newVertex: VO): boolean;

@@ -14,2 +14,3 @@ "use strict";

const queue_1 = require("../queue");
const base_1 = require("../base");
class AbstractVertex {

@@ -49,4 +50,5 @@ /**

exports.AbstractEdge = AbstractEdge;
class AbstractGraph {
class AbstractGraph extends base_1.IterablePairBase {
constructor() {
super();
this._vertices = new Map();

@@ -1033,20 +1035,28 @@ }

}
*[Symbol.iterator]() {
for (const vertex of this._vertices.values()) {
yield [vertex.key, vertex.value];
}
}
forEach(callback) {
let index = 0;
for (const vertex of this) {
callback(vertex, index, this._vertices);
index++;
}
}
filter(predicate) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates over key-value pairs in a data structure and returns an array of
* pairs that satisfy a given predicate.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It is used to determine whether an element should be included
* in the filtered array. The callback function should return `true` if the element should be
* included, and `
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method returns an array of key-value pairs `[VertexKey, V | undefined][]`
* that satisfy the given predicate function.
*/
filter(predicate, thisArg) {
const filtered = [];
let index = 0;
for (const entry of this) {
if (predicate(entry, index, this._vertices)) {
filtered.push(entry);
for (const [key, value] of this) {
if (predicate.call(thisArg, value, key, index, this)) {
filtered.push([key, value]);
}

@@ -1057,7 +1067,24 @@ index++;

}
map(callback) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function iterates over the elements of a collection and applies a callback function to
* each element, returning an array of the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* map. It takes four arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If `thisArg` is provided, it will be
* used as the `this` value when calling the callback function. If `thisArg` is not provided, `
* @returns The `map` function is returning an array of type `T[]`.
*/
map(callback, thisArg) {
const mapped = [];
let index = 0;
for (const entry of this) {
mapped.push(callback(entry, index, this._vertices));
for (const [key, value] of this) {
mapped.push(callback.call(thisArg, value, key, index, this));
index++;

@@ -1067,10 +1094,6 @@ }

}
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const entry of this) {
accumulator = callback(accumulator, entry, index, this._vertices);
index++;
*_getIterator() {
for (const vertex of this._vertices.values()) {
yield [vertex.key, vertex.value];
}
return accumulator;
}

@@ -1077,0 +1100,0 @@ _addVertexOnly(newVertex) {

@@ -8,4 +8,5 @@ /**

*/
import { HashMapLinkedNode, HashMapOptions, HashMapStoreItem } from '../../types';
export declare class HashMap<K = any, V = any> {
import { HashMapLinkedNode, HashMapOptions, HashMapStoreItem, PairCallback } from '../../types';
import { IterablePairBase } from "../base";
export declare class HashMap<K = any, V = any> extends IterablePairBase<K, V> {
protected _store: {

@@ -71,51 +72,9 @@ [key: string]: HashMapStoreItem<K, V>;

/**
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
[Symbol.iterator](): IterableIterator<[K, V]>;
/**
* The function returns an iterator that yields key-value pairs from the object.
*/
entries(): IterableIterator<[K, V]>;
/**
* The function `keys()` returns an iterator that yields all the keys of the object.
*/
keys(): IterableIterator<K>;
values(): IterableIterator<V>;
/**
* The `every` function checks if every element in a HashMap satisfies a given predicate function.
* @param predicate - The predicate parameter is a function that takes four arguments: value, key,
* index, and map. It is used to test each element in the map against a condition. If the predicate
* function returns false for any element, the every() method will return false. If the predicate
* function returns true for all
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The method is returning a boolean value. It returns true if the predicate function
* returns true for every element in the map, and false otherwise.
*/
every(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): boolean;
/**
* The "some" function checks if at least one element in a HashMap satisfies a given predicate.
* @param predicate - The `predicate` parameter is a function that takes four arguments: `value`,
* `key`, `index`, and `map`. It is used to determine whether a specific condition is met for a given
* key-value pair in the `HashMap`.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns a boolean value. It returns true if the predicate function returns true for any element
* in the map, and false otherwise.
*/
some(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): boolean;
/**
* The `forEach` function iterates over the elements of a HashMap and applies a callback function to
* each element.
* @param callbackfn - A function that will be called for each key-value pair in the HashMap. It
* takes four parameters:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callbackfn` function. If `thisArg` is provided, it will
* be passed as the `this` value inside the `callbackfn` function. If `thisArg
*/
forEach(callbackfn: (value: V, key: K, index: number, map: HashMap<K, V>) => void, thisArg?: any): void;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new HashMap by applying a callback function to each

@@ -131,4 +90,11 @@ * key-value pair in the original HashMap.

*/
map<U>(callbackfn: (value: V, key: K, index: number, map: HashMap<K, V>) => U, thisArg?: any): HashMap<K, U>;
map<U>(callbackfn: PairCallback<K, V, U>, thisArg?: any): HashMap<K, U>;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new HashMap containing key-value pairs from the original HashMap

@@ -146,16 +112,9 @@ * that satisfy a given predicate function.

*/
filter(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): HashMap<K, V>;
filter(predicate: PairCallback<K, V, boolean>, thisArg?: any): HashMap<K, V>;
print(): void;
/**
* The `reduce` function iterates over the elements of a HashMap and applies a callback function to
* each element, accumulating a single value.
* @param callbackfn - The callback function that will be called for each element in the HashMap. It
* takes five parameters:
* @param {U} initialValue - The initialValue parameter is the initial value of the accumulator. It
* is the value that will be used as the first argument of the callback function when reducing the
* elements of the map.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the elements in the `HashMap`.
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
*/
reduce<U>(callbackfn: (accumulator: U, currentValue: V, currentKey: K, index: number, map: HashMap<K, V>) => U, initialValue: U): U;
print(): void;
protected _getIterator(): IterableIterator<[K, V]>;
protected _hashFn: (key: K) => string;

@@ -165,3 +124,3 @@ protected _isObjKey(key: any): key is (object | ((...args: any[]) => any));

}
export declare class LinkedHashMap<K = any, V = any> {
export declare class LinkedHashMap<K = any, V = any> extends IterablePairBase<K, V> {
protected _noObjMap: Record<string, HashMapLinkedNode<K, V | undefined>>;

@@ -219,4 +178,2 @@ protected _objMap: WeakMap<object, HashMapLinkedNode<K, V | undefined>>;

setMany(entries: Iterable<[K, V]>): void;
keys(): K[];
values(): V[];
/**

@@ -287,41 +244,44 @@ * Time Complexity: O(1)

/**
* Time Complexity: O(n), where n is the number of elements in the LinkedHashMap.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a LinkedHashMap and executes a callback function on
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* LinkedHashMap. It takes three arguments:
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback: (element: [K, V], index: number, hashMap: LinkedHashMap<K, V>) => void): void;
/**
* The `filter` function takes a predicate function and returns a new LinkedHashMap containing only the
* key-value pairs that satisfy the predicate.
* @param predicate - The `predicate` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object that contains the key-value pairs from the original LinkedHashMap that
* satisfy the given predicate function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new `LinkedHashMap` containing key-value pairs from the original
* map that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It should return a boolean value indicating whether the
* current element should be included in the filtered map or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is not provided, `this
* @returns a new `LinkedHashMap` object that contains the key-value pairs from the original
* `LinkedHashMap` object that satisfy the given predicate function.
*/
filter(predicate: (element: [K, V], index: number, map: LinkedHashMap<K, V>) => boolean): LinkedHashMap<K, V>;
filter(predicate: PairCallback<K, V, boolean>, thisArg?: any): LinkedHashMap<K, V>;
/**
* The `map` function takes a callback function and returns a new LinkedHashMap with the values transformed
* by the callback.
* @param callback - The `callback` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object with the values mapped according to the provided callback function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
map<NV>(callback: (element: [K, V], index: number, map: LinkedHashMap<K, V>) => NV): LinkedHashMap<K, NV>;
/**
* The `reduce` function iterates over the elements of a LinkedHashMap and applies a callback function to
* each element, accumulating a single value.
* @param callback - The callback parameter is a function that takes three arguments: accumulator,
* element, and map. It is called for each element in the LinkedHashMap and is used to accumulate a single
* result.
* @param {A} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the map.
* @returns The `reduce` function is returning the final value of the accumulator after iterating
* over all the elements in the LinkedHashMap and applying the callback function to each element.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new `LinkedHashMap` by applying a callback function to
* each key-value pair in the original map.
* @param callback - The callback parameter is a function that will be called for each key-value pair
* in the map. It takes four arguments: the value of the current key-value pair, the key of the
* current key-value pair, the index of the current key-value pair, and the map itself. The callback
* function should
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If provided, the callback function will
* be called with `thisArg` as its `this` value. If not provided, `this` will refer to the current
* map
* @returns a new `LinkedHashMap` object with the values mapped according to the provided callback
* function.
*/
reduce<A>(callback: (accumulator: A, element: [K, V], index: number, map: LinkedHashMap<K, V>) => A, initialValue: A): A;
map<NV>(callback: PairCallback<K, V, NV>, thisArg?: any): LinkedHashMap<K, NV>;
print(): void;
/**

@@ -333,4 +293,3 @@ * Time Complexity: O(n), where n is the number of elements in the LinkedHashMap.

*/
[Symbol.iterator](): Generator<[K, V], void, unknown>;
print(): void;
protected _getIterator(): Generator<[K, V], void, unknown>;
/**

@@ -337,0 +296,0 @@ * Time Complexity: O(1)

@@ -12,3 +12,4 @@ "use strict";

const utils_1 = require("../../utils");
class HashMap {
const base_1 = require("../base");
class HashMap extends base_1.IterablePairBase {
/**

@@ -23,2 +24,3 @@ * The constructor function initializes a new instance of a class with optional elements and options.

constructor(elements = [], options) {
super();
this._store = {};

@@ -140,91 +142,9 @@ this._objMap = new Map();

/**
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
*[Symbol.iterator]() {
for (const node of Object.values(this._store)) {
yield [node.key, node.value];
}
for (const node of this._objMap) {
yield node;
}
}
/**
* The function returns an iterator that yields key-value pairs from the object.
*/
*entries() {
for (const item of this) {
yield item;
}
}
/**
* The function `keys()` returns an iterator that yields all the keys of the object.
*/
*keys() {
for (const [key] of this) {
yield key;
}
}
*values() {
for (const [, value] of this) {
yield value;
}
}
/**
* The `every` function checks if every element in a HashMap satisfies a given predicate function.
* @param predicate - The predicate parameter is a function that takes four arguments: value, key,
* index, and map. It is used to test each element in the map against a condition. If the predicate
* function returns false for any element, the every() method will return false. If the predicate
* function returns true for all
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The method is returning a boolean value. It returns true if the predicate function
* returns true for every element in the map, and false otherwise.
*/
every(predicate, thisArg) {
let index = 0;
for (const [key, value] of this) {
if (!predicate.call(thisArg, value, key, index++, this)) {
return false;
}
}
return true;
}
/**
* The "some" function checks if at least one element in a HashMap satisfies a given predicate.
* @param predicate - The `predicate` parameter is a function that takes four arguments: `value`,
* `key`, `index`, and `map`. It is used to determine whether a specific condition is met for a given
* key-value pair in the `HashMap`.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns a boolean value. It returns true if the predicate function returns true for any element
* in the map, and false otherwise.
*/
some(predicate, thisArg) {
let index = 0;
for (const [key, value] of this) {
if (predicate.call(thisArg, value, key, index++, this)) {
return true;
}
}
return false;
}
/**
* The `forEach` function iterates over the elements of a HashMap and applies a callback function to
* each element.
* @param callbackfn - A function that will be called for each key-value pair in the HashMap. It
* takes four parameters:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callbackfn` function. If `thisArg` is provided, it will
* be passed as the `this` value inside the `callbackfn` function. If `thisArg
*/
forEach(callbackfn, thisArg) {
let index = 0;
for (const [key, value] of this) {
callbackfn.call(thisArg, value, key, index++, this);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new HashMap by applying a callback function to each

@@ -249,2 +169,9 @@ * key-value pair in the original HashMap.

/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new HashMap containing key-value pairs from the original HashMap

@@ -272,24 +199,17 @@ * that satisfy a given predicate function.

}
print() {
console.log([...this.entries()]);
}
/**
* The `reduce` function iterates over the elements of a HashMap and applies a callback function to
* each element, accumulating a single value.
* @param callbackfn - The callback function that will be called for each element in the HashMap. It
* takes five parameters:
* @param {U} initialValue - The initialValue parameter is the initial value of the accumulator. It
* is the value that will be used as the first argument of the callback function when reducing the
* elements of the map.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the elements in the `HashMap`.
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
*/
reduce(callbackfn, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const [key, value] of this) {
accumulator = callbackfn(accumulator, value, key, index++, this);
*_getIterator() {
for (const node of Object.values(this._store)) {
yield [node.key, node.value];
}
return accumulator;
for (const node of this._objMap) {
yield node;
}
}
print() {
console.log([...this.entries()]);
}
_isObjKey(key) {

@@ -318,3 +238,3 @@ const keyType = typeof key;

exports.HashMap = HashMap;
class LinkedHashMap {
class LinkedHashMap extends base_1.IterablePairBase {
constructor(elements, options = {

@@ -324,2 +244,3 @@ hashFn: (key) => String(key),

}) {
super();
this._noObjMap = {};

@@ -460,14 +381,2 @@ this._objMap = new WeakMap();

}
keys() {
const keys = [];
for (const [key] of this)
keys.push(key);
return keys;
}
values() {
const values = [];
for (const [, value] of this)
values.push(value);
return values;
}
/**

@@ -602,31 +511,25 @@ * Time Complexity: O(1)

/**
* Time Complexity: O(n), where n is the number of elements in the LinkedHashMap.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a LinkedHashMap and executes a callback function on
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* LinkedHashMap. It takes three arguments:
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback) {
let index = 0;
let node = this._head;
while (node !== this._sentinel) {
callback([node.key, node.value], index++, this);
node = node.next;
}
}
/**
* The `filter` function takes a predicate function and returns a new LinkedHashMap containing only the
* key-value pairs that satisfy the predicate.
* @param predicate - The `predicate` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object that contains the key-value pairs from the original LinkedHashMap that
* satisfy the given predicate function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new `LinkedHashMap` containing key-value pairs from the original
* map that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It should return a boolean value indicating whether the
* current element should be included in the filtered map or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is not provided, `this
* @returns a new `LinkedHashMap` object that contains the key-value pairs from the original
* `LinkedHashMap` object that satisfy the given predicate function.
*/
filter(predicate) {
filter(predicate, thisArg) {
const filteredMap = new LinkedHashMap();
let index = 0;
for (const [key, value] of this) {
if (predicate([key, value], index, this)) {
if (predicate.call(thisArg, value, key, index, this)) {
filteredMap.set(key, value);

@@ -639,13 +542,27 @@ }

/**
* The `map` function takes a callback function and returns a new LinkedHashMap with the values transformed
* by the callback.
* @param callback - The `callback` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object with the values mapped according to the provided callback function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
map(callback) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new `LinkedHashMap` by applying a callback function to
* each key-value pair in the original map.
* @param callback - The callback parameter is a function that will be called for each key-value pair
* in the map. It takes four arguments: the value of the current key-value pair, the key of the
* current key-value pair, the index of the current key-value pair, and the map itself. The callback
* function should
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If provided, the callback function will
* be called with `thisArg` as its `this` value. If not provided, `this` will refer to the current
* map
* @returns a new `LinkedHashMap` object with the values mapped according to the provided callback
* function.
*/
map(callback, thisArg) {
const mappedMap = new LinkedHashMap();
let index = 0;
for (const [key, value] of this) {
const newValue = callback([key, value], index, this);
const newValue = callback.call(thisArg, value, key, index, this);
mappedMap.set(key, newValue);

@@ -656,22 +573,4 @@ index++;

}
/**
* The `reduce` function iterates over the elements of a LinkedHashMap and applies a callback function to
* each element, accumulating a single value.
* @param callback - The callback parameter is a function that takes three arguments: accumulator,
* element, and map. It is called for each element in the LinkedHashMap and is used to accumulate a single
* result.
* @param {A} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the map.
* @returns The `reduce` function is returning the final value of the accumulator after iterating
* over all the elements in the LinkedHashMap and applying the callback function to each element.
*/
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const entry of this) {
accumulator = callback(accumulator, entry, index, this);
index++;
}
return accumulator;
print() {
console.log([...this]);
}

@@ -684,3 +583,3 @@ /**

*/
*[Symbol.iterator]() {
*_getIterator() {
let node = this._head;

@@ -692,5 +591,2 @@ while (node !== this._sentinel) {

}
print() {
console.log([...this]);
}
/**

@@ -697,0 +593,0 @@ * Time Complexity: O(1)

@@ -7,5 +7,6 @@ /**

*/
import type { Comparator, DFSOrderPattern } from '../../types';
import type { Comparator, DFSOrderPattern, ElementCallback } from '../../types';
import { HeapOptions } from "../../types";
export declare class Heap<E = any> {
import { IterableElementBase } from "../base";
export declare class Heap<E = any> extends IterableElementBase<E> {
options: HeapOptions<E>;

@@ -196,8 +197,49 @@ constructor(elements?: Iterable<E>, options?: HeapOptions<E>);

fix(): void;
[Symbol.iterator](): Generator<E, void, unknown>;
forEach(callback: (element: E, index: number, heap: this) => void): void;
filter(predicate: (element: E, index: number, heap: Heap<E>) => boolean): Heap<E>;
map<T>(callback: (element: E, index: number, heap: Heap<E>) => T, comparator: Comparator<T>): Heap<T>;
reduce<T>(callback: (accumulator: T, currentValue: E, currentIndex: number, heap: Heap<E>) => T, initialValue: T): T;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new Heap object containing elements that pass a given callback
* function.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the heap. It takes three arguments: the current element, the index of the current element, and the
* heap itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `Heap` object that contains the elements that pass
* the filter condition specified by the `callback` function.
*/
filter(callback: ElementCallback<E, boolean>, thisArg?: any): Heap<E>;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new heap by applying a callback function to each element of the
* original heap.
* @param callback - The callback parameter is a function that will be called for each element in the
* original heap. It takes three arguments: the current element, the index of the current element,
* and the original heap itself. The callback function should return a value of type T, which will be
* added to the mapped heap.
* @param comparator - The `comparator` parameter is a function that is used to compare elements in
* the heap. It takes two arguments, `a` and `b`, and returns a negative number if `a` is less than
* `b`, a positive number if `a` is greater than `b`, or
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. It is used when you want to bind a
* specific object as the context for the callback function. If `thisArg` is not provided,
* `undefined` is used as
* @returns a new instance of the Heap class, which is created using the mapped elements from the
* original Heap.
*/
map<T>(callback: ElementCallback<E, T>, comparator: Comparator<T>, thisArg?: any): Heap<T>;
/**
* Time Complexity: O(log n)

@@ -207,2 +249,3 @@ * Space Complexity: O(1)

print(): void;
protected _getIterator(): Generator<E, void, unknown>;
/**

@@ -209,0 +252,0 @@ * Time Complexity: O(n)

@@ -10,4 +10,6 @@ "use strict";

exports.FibonacciHeap = exports.FibonacciHeapNode = exports.Heap = void 0;
class Heap {
const base_1 = require("../base");
class Heap extends base_1.IterableElementBase {
constructor(elements, options) {
super();
this._elements = [];

@@ -314,30 +316,62 @@ const defaultComparator = (a, b) => {

}
*[Symbol.iterator]() {
for (const element of this.elements) {
yield element;
}
}
forEach(callback) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new Heap object containing elements that pass a given callback
* function.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the heap. It takes three arguments: the current element, the index of the current element, and the
* heap itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `Heap` object that contains the elements that pass
* the filter condition specified by the `callback` function.
*/
filter(callback, thisArg) {
const filteredList = new Heap();
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
filter(predicate) {
const filteredHeap = new Heap([], this.options);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
filteredHeap.push(el);
for (const current of this) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);
}
index++;
}
return filteredHeap;
return filteredList;
}
map(callback, comparator) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new heap by applying a callback function to each element of the
* original heap.
* @param callback - The callback parameter is a function that will be called for each element in the
* original heap. It takes three arguments: the current element, the index of the current element,
* and the original heap itself. The callback function should return a value of type T, which will be
* added to the mapped heap.
* @param comparator - The `comparator` parameter is a function that is used to compare elements in
* the heap. It takes two arguments, `a` and `b`, and returns a negative number if `a` is less than
* `b`, a positive number if `a` is greater than `b`, or
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. It is used when you want to bind a
* specific object as the context for the callback function. If `thisArg` is not provided,
* `undefined` is used as
* @returns a new instance of the Heap class, which is created using the mapped elements from the
* original Heap.
*/
map(callback, comparator, thisArg) {
const mappedHeap = new Heap([], { comparator: comparator });
let index = 0;
for (const el of this) {
mappedHeap.add(callback(el, index, this));
mappedHeap.add(callback.call(thisArg, el, index, this));
index++;

@@ -347,11 +381,2 @@ }

}
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
}
return accumulator;
}
/**

@@ -364,2 +389,7 @@ * Time Complexity: O(log n)

}
*_getIterator() {
for (const element of this.elements) {
yield element;
}
}
/**

@@ -366,0 +396,0 @@ * Time Complexity: O(n)

@@ -12,1 +12,2 @@ export * from './hash';

export * from './trie';
export * from './base';

@@ -28,1 +28,2 @@ "use strict";

__exportStar(require("./trie"), exports);
__exportStar(require("./base"), exports);

@@ -0,1 +1,3 @@

import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -19,3 +21,3 @@ * data-structure-typed

}
export declare class DoublyLinkedList<E = any> {
export declare class DoublyLinkedList<E = any> extends IterableElementBase<E> {
/**

@@ -391,34 +393,23 @@ * The constructor initializes the linked list with an empty head, tail, and length.

/**
* The function returns an iterator that iterates over the values of a linked list.
*/
[Symbol.iterator](): Generator<E, void, unknown>;
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback: (value: E, index: number, list: DoublyLinkedList<E>) => void): void;
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a DoublyLinkedList and returns a new DoublyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the DoublyLinkedList class.
* The `filter` function creates a new DoublyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element, returning only the elements for which the
* callback function returns true.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the DoublyLinkedList. It takes three arguments: the current element, the index of the current
* element, and the DoublyLinkedList itself. The callback function should return a boolean value
* indicating whether the current element should be included
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `DoublyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback: (value: E, index: number, list: DoublyLinkedList<E>) => boolean): DoublyLinkedList<E>;
filter(callback: ElementCallback<E, boolean>, thisArg?: any): DoublyLinkedList<E>;
/**

@@ -429,13 +420,19 @@ * Time Complexity: O(n), where n is the number of elements in the linked list.

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the DoublyLinkedList, returning a new
* DoublyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original DoublyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* DoublyLinkedList).
* @returns The `map` function is returning a new instance of `DoublyLinkedList<T>` that contains the mapped values.
* The `map` function creates a new DoublyLinkedList by applying a callback function to each element
* in the original list.
* @param callback - The callback parameter is a function that will be called for each element in the
* DoublyLinkedList. It takes three arguments: the current element, the index of the current element,
* and the DoublyLinkedList itself. The callback function should return a value that will be added to
* the new DoublyLinkedList that
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `DoublyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original `DoublyLinkedList`
* object.
*/
map<T>(callback: (value: E, index: number, list: DoublyLinkedList<E>) => T): DoublyLinkedList<T>;
map<T>(callback: ElementCallback<E, T>, thisArg?: any): DoublyLinkedList<T>;
/**

@@ -445,17 +442,7 @@ * Time Complexity: O(n), where n is the number of elements in the linked list.

*/
print(): void;
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
* The function returns an iterator that iterates over the values of a linked list.
*/
reduce<T>(callback: (accumulator: T, value: E, index: number, list: DoublyLinkedList<E>) => T, initialValue: T): T;
print(): void;
protected _getIterator(): IterableIterator<E>;
}
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.DoublyLinkedList = exports.DoublyLinkedListNode = void 0;
const base_1 = require("../base");
/**

@@ -24,3 +25,3 @@ * data-structure-typed

exports.DoublyLinkedListNode = DoublyLinkedListNode;
class DoublyLinkedList {
class DoublyLinkedList extends base_1.IterableElementBase {
/**

@@ -30,2 +31,3 @@ * The constructor initializes the linked list with an empty head, tail, and length.

constructor(elements) {
super();
this._head = undefined;

@@ -672,50 +674,27 @@ this._tail = undefined;

/**
* The function returns an iterator that iterates over the values of a linked list.
*/
*[Symbol.iterator]() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a DoublyLinkedList and returns a new DoublyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the DoublyLinkedList class.
* The `filter` function creates a new DoublyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element, returning only the elements for which the
* callback function returns true.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the DoublyLinkedList. It takes three arguments: the current element, the index of the current
* element, and the DoublyLinkedList itself. The callback function should return a boolean value
* indicating whether the current element should be included
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `DoublyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback) {
filter(callback, thisArg) {
const filteredList = new DoublyLinkedList();
let index = 0;
for (const current of this) {
if (callback(current, index, this)) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);

@@ -732,17 +711,23 @@ }

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the DoublyLinkedList, returning a new
* DoublyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original DoublyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* DoublyLinkedList).
* @returns The `map` function is returning a new instance of `DoublyLinkedList<T>` that contains the mapped values.
* The `map` function creates a new DoublyLinkedList by applying a callback function to each element
* in the original list.
* @param callback - The callback parameter is a function that will be called for each element in the
* DoublyLinkedList. It takes three arguments: the current element, the index of the current element,
* and the DoublyLinkedList itself. The callback function should return a value that will be added to
* the new DoublyLinkedList that
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `DoublyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original `DoublyLinkedList`
* object.
*/
map(callback) {
map(callback, thisArg) {
const mappedList = new DoublyLinkedList();
let index = 0;
for (const current of this) {
mappedList.push(callback(current, index, this));
mappedList.push(callback.call(thisArg, current, index, this));
index++;

@@ -756,28 +741,16 @@ }

*/
print() {
console.log([...this]);
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
* The function returns an iterator that iterates over the values of a linked list.
*/
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const current of this) {
accumulator = callback(accumulator, current, index, this);
index++;
*_getIterator() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
return accumulator;
}
print() {
console.log([...this]);
}
}
exports.DoublyLinkedList = DoublyLinkedList;

@@ -0,1 +1,3 @@

import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -18,3 +20,3 @@ * data-structure-typed

}
export declare class SinglyLinkedList<E = any> {
export declare class SinglyLinkedList<E = any> extends IterableElementBase<E> {
/**

@@ -349,34 +351,23 @@ * The constructor initializes the linked list with an empty head, tail, and length.

/**
* The function returns an iterator that iterates over the values of a linked list.
*/
[Symbol.iterator](): Generator<E, void, unknown>;
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback: (value: E, index: number, list: SinglyLinkedList<E>) => void): void;
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a SinglyLinkedList and returns a new SinglyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the SinglyLinkedList class.
* The `filter` function creates a new SinglyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element to determine if it should be included in the
* filtered list.
* @param callback - The callback parameter is a function that will be called for each element in the
* list. It takes three arguments: the current element, the index of the current element, and the
* list itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list or not
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `SinglyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback: (value: E, index: number, list: SinglyLinkedList<E>) => boolean): SinglyLinkedList<E>;
filter(callback: ElementCallback<E, boolean>, thisArg?: any): SinglyLinkedList<E>;
/**

@@ -387,13 +378,16 @@ * Time Complexity: O(n), where n is the number of elements in the linked list.

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the SinglyLinkedList, returning a new
* SinglyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original SinglyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* SinglyLinkedList).
* @returns The `map` function is returning a new instance of `SinglyLinkedList<T>` that contains the mapped values.
* The `map` function creates a new SinglyLinkedList by applying a callback function to each element
* of the original list.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the linked list. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `SinglyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original list.
*/
map<T>(callback: (value: E, index: number, list: SinglyLinkedList<E>) => T): SinglyLinkedList<T>;
map<T>(callback: ElementCallback<E, T>, thisArg?: any): SinglyLinkedList<T>;
/**

@@ -403,17 +397,4 @@ * Time Complexity: O(n), where n is the number of elements in the linked list.

*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
*/
reduce<T>(callback: (accumulator: T, value: E, index: number, list: SinglyLinkedList<E>) => T, initialValue: T): T;
print(): void;
protected _getIterator(): IterableIterator<E>;
}
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.SinglyLinkedList = exports.SinglyLinkedListNode = void 0;
const base_1 = require("../base");
/**

@@ -23,3 +24,3 @@ * data-structure-typed

exports.SinglyLinkedListNode = SinglyLinkedListNode;
class SinglyLinkedList {
class SinglyLinkedList extends base_1.IterableElementBase {
/**

@@ -29,2 +30,3 @@ * The constructor initializes the linked list with an empty head, tail, and length.

constructor(elements) {
super();
this._head = undefined;

@@ -614,50 +616,27 @@ this._tail = undefined;

/**
* The function returns an iterator that iterates over the values of a linked list.
*/
*[Symbol.iterator]() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a SinglyLinkedList and returns a new SinglyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the SinglyLinkedList class.
* The `filter` function creates a new SinglyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element to determine if it should be included in the
* filtered list.
* @param callback - The callback parameter is a function that will be called for each element in the
* list. It takes three arguments: the current element, the index of the current element, and the
* list itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list or not
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `SinglyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback) {
filter(callback, thisArg) {
const filteredList = new SinglyLinkedList();
let index = 0;
for (const current of this) {
if (callback(current, index, this)) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);

@@ -674,17 +653,20 @@ }

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the SinglyLinkedList, returning a new
* SinglyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original SinglyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* SinglyLinkedList).
* @returns The `map` function is returning a new instance of `SinglyLinkedList<T>` that contains the mapped values.
* The `map` function creates a new SinglyLinkedList by applying a callback function to each element
* of the original list.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the linked list. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `SinglyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original list.
*/
map(callback) {
map(callback, thisArg) {
const mappedList = new SinglyLinkedList();
let index = 0;
for (const current of this) {
mappedList.push(callback(current, index, this));
mappedList.push(callback.call(thisArg, current, index, this));
index++;

@@ -698,28 +680,13 @@ }

*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
*/
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const current of this) {
accumulator = callback(accumulator, current, index, this);
index++;
}
return accumulator;
}
print() {
console.log([...this]);
}
*_getIterator() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
}
exports.SinglyLinkedList = SinglyLinkedList;

@@ -8,3 +8,4 @@ /**

*/
import { IterableWithSizeOrLength } from "../../types";
import { ElementCallback, IterableWithSizeOrLength } from "../../types";
import { IterableElementBase } from "../base";
/**

@@ -16,3 +17,3 @@ * Deque can provide random access with O(1) time complexity

*/
export declare class Deque<E> {
export declare class Deque<E> extends IterableElementBase<E> {
protected _bucketFirst: number;

@@ -361,28 +362,2 @@ protected _firstInBucket: number;

* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
[Symbol.iterator](): Generator<E, void, unknown>;
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
*/
forEach(callback: (element: E, index: number, deque: this) => void): void;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)

@@ -394,10 +369,15 @@ */

*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Deque` object that contains only the elements
* that satisfy the given `predicate` function.
* The `filter` function creates a new deque containing elements from the original deque that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the deque itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* deque or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Deque` object that contains the elements that
* satisfy the given predicate function.
*/
filter(predicate: (element: E, index: number, deque: this) => boolean): Deque<E>;
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Deque<E>;
/**

@@ -411,12 +391,17 @@ * Time Complexity: O(n)

*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Deque` object with the transformed elements.
* The `map` function creates a new Deque by applying a callback function to each element of the
* original Deque.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the deque. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns a new Deque object with the mapped values.
*/
map<T>(callback: (element: E, index: number, deque: this) => T): Deque<T>;
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Deque<T>;
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*/
print(): void;
/**

@@ -426,13 +411,6 @@ * Time Complexity: O(n)

*
* The `reduce` function iterates over the elements of a deque and applies a callback function to
* each element, accumulating a single value.
* @param callback - The `callback` parameter is a function that takes four arguments:
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the deque.
* @returns the final value of the accumulator after iterating over all elements in the deque and
* applying the callback function to each element.
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
reduce<T>(callback: (accumulator: T, element: E, index: number, deque: this) => T, initialValue: T): T;
print(): void;
protected _getIterator(): Generator<E, void, unknown>;
/**

@@ -439,0 +417,0 @@ * Time Complexity: O(n)

@@ -12,2 +12,3 @@ "use strict";

const utils_1 = require("../../utils");
const base_1 = require("../base");
/**

@@ -19,3 +20,3 @@ * Deque can provide random access with O(1) time complexity

*/
class Deque {
class Deque extends base_1.IterableElementBase {
/**

@@ -31,2 +32,3 @@ * The constructor initializes a data structure with a specified bucket size and populates it with

constructor(elements = [], bucketSize = (1 << 12)) {
super();
this._bucketFirst = 0;

@@ -659,38 +661,2 @@ this._firstInBucket = 0;

* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
*[Symbol.iterator]() {
for (let i = 0; i < this.size; ++i) {
yield this.getAt(i);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
*/
forEach(callback) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)

@@ -702,14 +668,19 @@ */

*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Deque` object that contains only the elements
* that satisfy the given `predicate` function.
* The `filter` function creates a new deque containing elements from the original deque that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the deque itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* deque or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Deque` object that contains the elements that
* satisfy the given predicate function.
*/
filter(predicate) {
filter(predicate, thisArg) {
const newDeque = new Deque([], this._bucketSize);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newDeque.push(el);

@@ -729,12 +700,16 @@ }

*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Deque` object with the transformed elements.
* The `map` function creates a new Deque by applying a callback function to each element of the
* original Deque.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the deque. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns a new Deque object with the mapped values.
*/
map(callback) {
map(callback, thisArg) {
const newDeque = new Deque([], this._bucketSize);
let index = 0;
for (const el of this) {
newDeque.push(callback(el, index, this));
newDeque.push(callback.call(thisArg, el, index, this));
index++;

@@ -746,4 +721,7 @@ }

* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*/
print() {
console.log([...this]);
}
/**

@@ -753,23 +731,10 @@ * Time Complexity: O(n)

*
* The `reduce` function iterates over the elements of a deque and applies a callback function to
* each element, accumulating a single value.
* @param callback - The `callback` parameter is a function that takes four arguments:
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the deque.
* @returns the final value of the accumulator after iterating over all elements in the deque and
* applying the callback function to each element.
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
*_getIterator() {
for (let i = 0; i < this.size; ++i) {
yield this.getAt(i);
}
return accumulator;
}
print() {
console.log([...this]);
}
/**

@@ -776,0 +741,0 @@ * Time Complexity: O(n)

@@ -7,26 +7,6 @@ /**

import { SinglyLinkedList } from '../linked-list';
export declare class LinkedListQueue<E = any> extends SinglyLinkedList<E> {
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
export declare class Queue<E = any> extends IterableElementBase<E> {
/**
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
enqueue(value: E): void;
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue(): E | undefined;
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst(): E | undefined;
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek(): E | undefined;
}
export declare class Queue<E = any> {
/**
* The constructor initializes an instance of a class with an optional array of elements and sets the offset to 0.

@@ -210,17 +190,23 @@ * @param {E[]} [elements] - The `elements` parameter is an optional array of elements of type `E`. If provided, it

print(): void;
[Symbol.iterator](): Generator<E, void, unknown>;
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
* The `filter` function creates a new `Queue` object containing elements from the original `Queue`
* that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the queue itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* queue or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Queue` object that contains the elements that
* satisfy the given predicate function.
*/
forEach(callback: (element: E, index: number, queue: this) => void): void;
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Queue<E>;
/**

@@ -234,10 +220,13 @@ * Time Complexity: O(n)

*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Queue` object that contains only the elements
* that satisfy the given `predicate` function.
* The `map` function takes a callback function and applies it to each element in the queue,
* returning a new queue with the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* queue. It takes three arguments: the current element, the index of the current element, and the
* queue itself. The callback function should return a new value that will be added to the new queue.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `Queue` object with the transformed elements.
*/
filter(predicate: (element: E, index: number, queue: this) => boolean): Queue<E>;
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Queue<T>;
/**

@@ -247,13 +236,25 @@ * Time Complexity: O(n)

*/
protected _getIterator(): Generator<E, void, unknown>;
}
export declare class LinkedListQueue<E = any> extends SinglyLinkedList<E> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Queue` object with the transformed elements.
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
map<T>(callback: (element: E, index: number, queue: this) => T): Queue<T>;
reduce<T>(callback: (accumulator: T, element: E, index: number, queue: this) => T, initialValue: T): T;
enqueue(value: E): void;
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue(): E | undefined;
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst(): E | undefined;
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek(): E | undefined;
}
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.Queue = exports.LinkedListQueue = void 0;
exports.LinkedListQueue = exports.Queue = void 0;
/**

@@ -10,36 +10,5 @@ * @license MIT

const linked_list_1 = require("../linked-list");
class LinkedListQueue extends linked_list_1.SinglyLinkedList {
const base_1 = require("../base");
class Queue extends base_1.IterableElementBase {
/**
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
enqueue(value) {
this.push(value);
}
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue() {
return this.shift();
}
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst() {
var _a;
return (_a = this.head) === null || _a === void 0 ? void 0 : _a.value;
}
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek() {
return this.getFirst();
}
}
exports.LinkedListQueue = LinkedListQueue;
class Queue {
/**
* The constructor initializes an instance of a class with an optional array of elements and sets the offset to 0.

@@ -51,2 +20,3 @@ * @param {E[]} [elements] - The `elements` parameter is an optional array of elements of type `E`. If provided, it

constructor(elements) {
super();
this._nodes = elements || [];

@@ -273,29 +243,4 @@ this._offset = 0;

}
*[Symbol.iterator]() {
for (const item of this.nodes) {
yield item;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
*/
forEach(callback) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)

@@ -307,14 +252,19 @@ */

*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Queue` object that contains only the elements
* that satisfy the given `predicate` function.
* The `filter` function creates a new `Queue` object containing elements from the original `Queue`
* that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the queue itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* queue or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Queue` object that contains the elements that
* satisfy the given predicate function.
*/
filter(predicate) {
filter(predicate, thisArg) {
const newDeque = new Queue([]);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newDeque.push(el);

@@ -334,12 +284,17 @@ }

*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Queue` object with the transformed elements.
* The `map` function takes a callback function and applies it to each element in the queue,
* returning a new queue with the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* queue. It takes three arguments: the current element, the index of the current element, and the
* queue itself. The callback function should return a new value that will be added to the new queue.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `Queue` object with the transformed elements.
*/
map(callback) {
map(callback, thisArg) {
const newDeque = new Queue([]);
let index = 0;
for (const el of this) {
newDeque.push(callback(el, index, this));
newDeque.push(callback.call(thisArg, el, index, this));
index++;

@@ -349,12 +304,44 @@ }

}
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
*_getIterator() {
for (const item of this.nodes) {
yield item;
}
return accumulator;
}
}
exports.Queue = Queue;
class LinkedListQueue extends linked_list_1.SinglyLinkedList {
/**
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
enqueue(value) {
this.push(value);
}
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue() {
return this.shift();
}
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst() {
var _a;
return (_a = this.head) === null || _a === void 0 ? void 0 : _a.value;
}
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek() {
return this.getFirst();
}
}
exports.LinkedListQueue = LinkedListQueue;

@@ -0,1 +1,3 @@

import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -6,3 +8,3 @@ * @license MIT

*/
export declare class Stack<E = any> {
export declare class Stack<E = any> extends IterableElementBase<E> {
/**

@@ -108,15 +110,46 @@ * The constructor initializes an array of elements, which can be provided as an optional parameter.

/**
* Custom iterator for the Stack class.
* @returns An iterator object.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
[Symbol.iterator](): Generator<E, void, unknown>;
/**
* Applies a function to each element of the stack.
* @param {function(E): void} callback - A function to apply to each element.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new stack containing elements from the original stack that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the stack itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* stack or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Stack` object that contains the elements that
* satisfy the given predicate function.
*/
forEach(callback: (element: E, index: number, stack: this) => void): void;
filter(predicate: (element: E, index: number, stack: this) => boolean): Stack<E>;
map<T>(callback: (element: E, index: number, stack: this) => T): Stack<T>;
reduce<T>(callback: (accumulator: T, element: E, index: number, stack: this) => T, initialValue: T): T;
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Stack<E>;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the stack,
* returning a new stack with the results.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the stack. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` method is returning a new `Stack` object.
*/
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Stack<T>;
print(): void;
/**
* Custom iterator for the Stack class.
* @returns An iterator object.
*/
protected _getIterator(): Generator<E, void, unknown>;
}
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.Stack = void 0;
const base_1 = require("../base");
/**

@@ -9,3 +10,3 @@ * @license MIT

*/
class Stack {
class Stack extends base_1.IterableElementBase {
/**

@@ -18,2 +19,3 @@ * The constructor initializes an array of elements, which can be provided as an optional parameter.

constructor(elements) {
super();
this._elements = [];

@@ -143,26 +145,26 @@ if (elements) {

/**
* Custom iterator for the Stack class.
* @returns An iterator object.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
*[Symbol.iterator]() {
for (let i = 0; i < this.elements.length; i++) {
yield this.elements[i];
}
}
/**
* Applies a function to each element of the stack.
* @param {function(E): void} callback - A function to apply to each element.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new stack containing elements from the original stack that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the stack itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* stack or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Stack` object that contains the elements that
* satisfy the given predicate function.
*/
forEach(callback) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
filter(predicate) {
filter(predicate, thisArg) {
const newStack = new Stack();
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newStack.push(el);

@@ -174,7 +176,24 @@ }

}
map(callback) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the stack,
* returning a new stack with the results.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the stack. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` method is returning a new `Stack` object.
*/
map(callback, thisArg) {
const newStack = new Stack();
let index = 0;
for (const el of this) {
newStack.push(callback(el, index, this));
newStack.push(callback.call(thisArg, el, index, this));
index++;

@@ -184,15 +203,15 @@ }

}
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
}
return accumulator;
}
print() {
console.log([...this]);
}
/**
* Custom iterator for the Stack class.
* @returns An iterator object.
*/
*_getIterator() {
for (let i = 0; i < this.elements.length; i++) {
yield this.elements[i];
}
}
}
exports.Stack = Stack;

@@ -8,2 +8,4 @@ /**

*/
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -22,3 +24,3 @@ * TrieNode represents a node in the Trie data structure. It holds a character key, a map of children nodes,

*/
export declare class Trie {
export declare class Trie extends IterableElementBase<string> {
constructor(words?: string[], caseSensitive?: boolean);

@@ -147,8 +149,41 @@ protected _size: number;

getWords(prefix?: string, max?: number, isAllWhenEmptyPrefix?: boolean): string[];
[Symbol.iterator](): IterableIterator<string>;
forEach(callback: (word: string, index: number, trie: this) => void): void;
filter(predicate: (word: string, index: number, trie: this) => boolean): string[];
map(callback: (word: string, index: number, trie: this) => string): Trie;
reduce<T>(callback: (accumulator: T, word: string, index: number, trie: this) => T, initialValue: T): T;
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function takes a predicate function and returns a new array containing all the
* elements for which the predicate function returns true.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* `word`, `index`, and `this`. It should return a boolean value indicating whether the current
* element should be included in the filtered results or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method is returning an array of strings (`string[]`).
*/
filter(predicate: ElementCallback<string, boolean>, thisArg?: any): string[];
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new Trie by applying a callback function to each element in the Trie.
* @param callback - The callback parameter is a function that will be called for each element in the
* Trie. It takes three arguments: the current element in the Trie, the index of the current element,
* and the Trie itself. The callback function should return a new value for the element.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new Trie object.
*/
map(callback: ElementCallback<string, string>, thisArg?: any): Trie;
print(): void;
protected _getIterator(): IterableIterator<string>;
/**

@@ -155,0 +190,0 @@ * Time Complexity: O(M), where M is the length of the input string.

@@ -11,2 +11,3 @@ "use strict";

exports.Trie = exports.TrieNode = void 0;
const base_1 = require("../base");
/**

@@ -27,4 +28,5 @@ * TrieNode represents a node in the Trie data structure. It holds a character key, a map of children nodes,

*/
class Trie {
class Trie extends base_1.IterableElementBase {
constructor(words, caseSensitive = true) {
super();
this._root = new TrieNode('');

@@ -322,25 +324,25 @@ this._caseSensitive = caseSensitive;

}
*[Symbol.iterator]() {
function* _dfs(node, path) {
if (node.isEnd) {
yield path;
}
for (const [char, childNode] of node.children) {
yield* _dfs(childNode, path + char);
}
}
yield* _dfs(this.root, '');
}
forEach(callback) {
let index = 0;
for (const word of this) {
callback(word, index, this);
index++;
}
}
filter(predicate) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function takes a predicate function and returns a new array containing all the
* elements for which the predicate function returns true.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* `word`, `index`, and `this`. It should return a boolean value indicating whether the current
* element should be included in the filtered results or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method is returning an array of strings (`string[]`).
*/
filter(predicate, thisArg) {
const results = [];
let index = 0;
for (const word of this) {
if (predicate(word, index, this)) {
if (predicate.call(thisArg, word, index, this)) {
results.push(word);

@@ -352,7 +354,24 @@ }

}
map(callback) {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new Trie by applying a callback function to each element in the Trie.
* @param callback - The callback parameter is a function that will be called for each element in the
* Trie. It takes three arguments: the current element in the Trie, the index of the current element,
* and the Trie itself. The callback function should return a new value for the element.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new Trie object.
*/
map(callback, thisArg) {
const newTrie = new Trie();
let index = 0;
for (const word of this) {
newTrie.add(callback(word, index, this));
newTrie.add(callback.call(thisArg, word, index, this));
index++;

@@ -362,14 +381,16 @@ }

}
reduce(callback, initialValue) {
let accumulator = initialValue;
let index = 0;
for (const word of this) {
accumulator = callback(accumulator, word, index, this);
index++;
}
return accumulator;
}
print() {
console.log([...this]);
}
*_getIterator() {
function* _dfs(node, path) {
if (node.isEnd) {
yield path;
}
for (const [char, childNode] of node.children) {
yield* _dfs(childNode, path + char);
}
}
yield* _dfs(this.root, '');
}
/**

@@ -376,0 +397,0 @@ * Time Complexity: O(M), where M is the length of the input string.

@@ -12,1 +12,2 @@ export * from './binary-tree';

export * from './trie';
export * from './base';

@@ -28,1 +28,2 @@ "use strict";

__exportStar(require("./trie"), exports);
__exportStar(require("./base"), exports);
{
"name": "red-black-tree-typed",
"version": "1.48.1",
"version": "1.48.2",
"description": "RedBlackTree. Javascript & Typescript Data Structure.",

@@ -145,4 +145,4 @@ "main": "dist/index.js",

"dependencies": {
"data-structure-typed": "^1.48.1"
"data-structure-typed": "^1.48.2"
}
}

@@ -11,4 +11,6 @@ /**

import type { DijkstraResult, VertexKey } from '../../types';
import { PairCallback } from "../../types";
import { IGraph } from '../../interfaces';
import { Queue } from '../queue';
import { IterablePairBase } from "../base";

@@ -68,3 +70,7 @@ export abstract class AbstractVertex<V = any> {

EO extends AbstractEdge<E> = AbstractEdge<E>
> implements IGraph<V, E, VO, EO> {
> extends IterablePairBase<VertexKey, V | undefined> implements IGraph<V, E, VO, EO> {
constructor() {
super();
}
protected _vertices: Map<VertexKey, VO> = new Map<VertexKey, VO>();

@@ -1164,22 +1170,29 @@

* [Symbol.iterator](): Iterator<[VertexKey, V | undefined]> {
for (const vertex of this._vertices.values()) {
yield [vertex.key, vertex.value];
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => void): void {
let index = 0;
for (const vertex of this) {
callback(vertex, index, this._vertices);
index++;
}
}
filter(predicate: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => boolean): [VertexKey, V | undefined][] {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates over key-value pairs in a data structure and returns an array of
* pairs that satisfy a given predicate.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It is used to determine whether an element should be included
* in the filtered array. The callback function should return `true` if the element should be
* included, and `
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method returns an array of key-value pairs `[VertexKey, V | undefined][]`
* that satisfy the given predicate function.
*/
filter(predicate: PairCallback<VertexKey, V | undefined, boolean>, thisArg?: any): [VertexKey, V | undefined][] {
const filtered: [VertexKey, V | undefined][] = [];
let index = 0;
for (const entry of this) {
if (predicate(entry, index, this._vertices)) {
filtered.push(entry);
for (const [key, value] of this) {
if (predicate.call(thisArg, value, key, index, this)) {
filtered.push([key, value]);
}

@@ -1191,7 +1204,25 @@ index++;

map<T>(callback: (entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T): T[] {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function iterates over the elements of a collection and applies a callback function to
* each element, returning an array of the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* map. It takes four arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If `thisArg` is provided, it will be
* used as the `this` value when calling the callback function. If `thisArg` is not provided, `
* @returns The `map` function is returning an array of type `T[]`.
*/
map<T>(callback: PairCallback<VertexKey, V | undefined, T>, thisArg?: any): T[] {
const mapped: T[] = [];
let index = 0;
for (const entry of this) {
mapped.push(callback(entry, index, this._vertices));
for (const [key, value] of this) {
mapped.push(callback.call(thisArg, value, key, index, this));
index++;

@@ -1202,10 +1233,6 @@ }

reduce<T>(callback: (accumulator: T, entry: [VertexKey, V | undefined], index: number, map: Map<VertexKey, VO>) => T, initialValue: T): T {
let accumulator: T = initialValue;
let index = 0;
for (const entry of this) {
accumulator = callback(accumulator, entry, index, this._vertices);
index++;
protected* _getIterator(): IterableIterator<[VertexKey, V | undefined]> {
for (const vertex of this._vertices.values()) {
yield [vertex.key, vertex.value];
}
return accumulator;
}

@@ -1212,0 +1239,0 @@

@@ -10,5 +10,6 @@ /**

import { isWeakKey, rangeCheck } from '../../utils';
import { HashMapLinkedNode, HashMapOptions, HashMapStoreItem } from '../../types';
import { HashMapLinkedNode, HashMapOptions, HashMapStoreItem, PairCallback } from '../../types';
import { IterablePairBase } from "../base";
export class HashMap<K = any, V = any> {
export class HashMap<K = any, V = any> extends IterablePairBase<K, V> {
protected _store: { [key: string]: HashMapStoreItem<K, V> } = {};

@@ -28,2 +29,3 @@ protected _objMap: Map<object, V> = new Map();

}) {
super();
if (options) {

@@ -150,98 +152,10 @@ const { hashFn } = options;

/**
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
* [Symbol.iterator](): IterableIterator<[K, V]> {
for (const node of Object.values(this._store)) {
yield [node.key, node.value] as [K, V];
}
for (const node of this._objMap) {
yield node as [K, V];
}
}
/**
* The function returns an iterator that yields key-value pairs from the object.
*/
* entries(): IterableIterator<[K, V]> {
for (const item of this) {
yield item;
}
}
/**
* The function `keys()` returns an iterator that yields all the keys of the object.
*/
* keys(): IterableIterator<K> {
for (const [key] of this) {
yield key;
}
}
* values(): IterableIterator<V> {
for (const [, value] of this) {
yield value;
}
}
/**
* The `every` function checks if every element in a HashMap satisfies a given predicate function.
* @param predicate - The predicate parameter is a function that takes four arguments: value, key,
* index, and map. It is used to test each element in the map against a condition. If the predicate
* function returns false for any element, the every() method will return false. If the predicate
* function returns true for all
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The method is returning a boolean value. It returns true if the predicate function
* returns true for every element in the map, and false otherwise.
*/
every(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): boolean {
let index = 0;
for (const [key, value] of this) {
if (!predicate.call(thisArg, value, key, index++, this)) {
return false;
}
}
return true;
}
/**
* The "some" function checks if at least one element in a HashMap satisfies a given predicate.
* @param predicate - The `predicate` parameter is a function that takes four arguments: `value`,
* `key`, `index`, and `map`. It is used to determine whether a specific condition is met for a given
* key-value pair in the `HashMap`.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns a boolean value. It returns true if the predicate function returns true for any element
* in the map, and false otherwise.
*/
some(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): boolean {
let index = 0;
for (const [key, value] of this) {
if (predicate.call(thisArg, value, key, index++, this)) {
return true;
}
}
return false;
}
/**
* The `forEach` function iterates over the elements of a HashMap and applies a callback function to
* each element.
* @param callbackfn - A function that will be called for each key-value pair in the HashMap. It
* takes four parameters:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callbackfn` function. If `thisArg` is provided, it will
* be passed as the `this` value inside the `callbackfn` function. If `thisArg
*/
forEach(callbackfn: (value: V, key: K, index: number, map: HashMap<K, V>) => void, thisArg?: any): void {
let index = 0;
for (const [key, value] of this) {
callbackfn.call(thisArg, value, key, index++, this);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new HashMap by applying a callback function to each

@@ -257,3 +171,3 @@ * key-value pair in the original HashMap.

*/
map<U>(callbackfn: (value: V, key: K, index: number, map: HashMap<K, V>) => U, thisArg?: any): HashMap<K, U> {
map<U>(callbackfn: PairCallback<K, V, U>, thisArg?: any): HashMap<K, U> {
const resultMap = new HashMap<K, U>();

@@ -268,2 +182,10 @@ let index = 0;

/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new HashMap containing key-value pairs from the original HashMap

@@ -281,3 +203,3 @@ * that satisfy a given predicate function.

*/
filter(predicate: (value: V, key: K, index: number, map: HashMap<K, V>) => boolean, thisArg?: any): HashMap<K, V> {
filter(predicate: PairCallback<K, V, boolean>, thisArg?: any): HashMap<K, V> {
const filteredMap = new HashMap<K, V>();

@@ -293,26 +215,19 @@ let index = 0;

print(): void {
console.log([...this.entries()]);
}
/**
* The `reduce` function iterates over the elements of a HashMap and applies a callback function to
* each element, accumulating a single value.
* @param callbackfn - The callback function that will be called for each element in the HashMap. It
* takes five parameters:
* @param {U} initialValue - The initialValue parameter is the initial value of the accumulator. It
* is the value that will be used as the first argument of the callback function when reducing the
* elements of the map.
* @returns The `reduce` method is returning the final value of the accumulator after iterating over
* all the elements in the `HashMap`.
* The function returns an iterator that yields key-value pairs from both an object store and an
* object map.
*/
reduce<U>(callbackfn: (accumulator: U, currentValue: V, currentKey: K, index: number, map: HashMap<K, V>) => U, initialValue: U): U {
let accumulator = initialValue;
let index = 0;
for (const [key, value] of this) {
accumulator = callbackfn(accumulator, value, key, index++, this);
protected* _getIterator(): IterableIterator<[K, V]> {
for (const node of Object.values(this._store)) {
yield [node.key, node.value] as [K, V];
}
return accumulator;
for (const node of this._objMap) {
yield node as [K, V];
}
}
print(): void{
console.log([...this.entries()]);
}
protected _hashFn: (key: K) => string = (key: K) => String(key);

@@ -343,3 +258,3 @@

export class LinkedHashMap<K = any, V = any> {
export class LinkedHashMap<K = any, V = any> extends IterablePairBase<K, V> {

@@ -360,2 +275,3 @@ protected _noObjMap: Record<string, HashMapLinkedNode<K, V | undefined>> = {};

}) {
super();
this._sentinel = <HashMapLinkedNode<K, V>>{};

@@ -504,14 +420,2 @@ this._sentinel.prev = this._sentinel.next = this._head = this._tail = this._sentinel;

keys(): K[] {
const keys: K[] = [];
for (const [key] of this) keys.push(key);
return keys;
}
values(): V[] {
const values: V[] = [];
for (const [, value] of this) values.push(value);
return values;
}
/**

@@ -657,32 +561,26 @@ * Time Complexity: O(1)

/**
* Time Complexity: O(n), where n is the number of elements in the LinkedHashMap.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a LinkedHashMap and executes a callback function on
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* LinkedHashMap. It takes three arguments:
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback: (element: [K, V], index: number, hashMap: LinkedHashMap<K, V>) => void) {
let index = 0;
let node = this._head;
while (node !== this._sentinel) {
callback(<[K, V]>[node.key, node.value], index++, this);
node = node.next;
}
}
/**
* The `filter` function takes a predicate function and returns a new LinkedHashMap containing only the
* key-value pairs that satisfy the predicate.
* @param predicate - The `predicate` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object that contains the key-value pairs from the original LinkedHashMap that
* satisfy the given predicate function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new `LinkedHashMap` containing key-value pairs from the original
* map that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes four arguments:
* `value`, `key`, `index`, and `this`. It should return a boolean value indicating whether the
* current element should be included in the filtered map or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is not provided, `this
* @returns a new `LinkedHashMap` object that contains the key-value pairs from the original
* `LinkedHashMap` object that satisfy the given predicate function.
*/
filter(predicate: (element: [K, V], index: number, map: LinkedHashMap<K, V>) => boolean): LinkedHashMap<K, V> {
filter(predicate: PairCallback<K, V, boolean>, thisArg?: any): LinkedHashMap<K, V> {
const filteredMap = new LinkedHashMap<K, V>();
let index = 0;
for (const [key, value] of this) {
if (predicate([key, value], index, this)) {
if (predicate.call(thisArg, value, key, index, this)) {
filteredMap.set(key, value);

@@ -696,13 +594,28 @@ }

/**
* The `map` function takes a callback function and returns a new LinkedHashMap with the values transformed
* by the callback.
* @param callback - The `callback` parameter is a function that takes two arguments: `element` and
* `map`.
* @returns a new LinkedHashMap object with the values mapped according to the provided callback function.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
map<NV>(callback: (element: [K, V], index: number, map: LinkedHashMap<K, V>) => NV): LinkedHashMap<K, NV> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function in TypeScript creates a new `LinkedHashMap` by applying a callback function to
* each key-value pair in the original map.
* @param callback - The callback parameter is a function that will be called for each key-value pair
* in the map. It takes four arguments: the value of the current key-value pair, the key of the
* current key-value pair, the index of the current key-value pair, and the map itself. The callback
* function should
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. If provided, the callback function will
* be called with `thisArg` as its `this` value. If not provided, `this` will refer to the current
* map
* @returns a new `LinkedHashMap` object with the values mapped according to the provided callback
* function.
*/
map<NV>(callback: PairCallback<K, V, NV>, thisArg?: any): LinkedHashMap<K, NV> {
const mappedMap = new LinkedHashMap<K, NV>();
let index = 0;
for (const [key, value] of this) {
const newValue = callback([key, value], index, this);
const newValue = callback.call(thisArg, value, key, index, this);
mappedMap.set(key, newValue);

@@ -714,22 +627,4 @@ index++;

/**
* The `reduce` function iterates over the elements of a LinkedHashMap and applies a callback function to
* each element, accumulating a single value.
* @param callback - The callback parameter is a function that takes three arguments: accumulator,
* element, and map. It is called for each element in the LinkedHashMap and is used to accumulate a single
* result.
* @param {A} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the map.
* @returns The `reduce` function is returning the final value of the accumulator after iterating
* over all the elements in the LinkedHashMap and applying the callback function to each element.
*/
reduce<A>(callback: (accumulator: A, element: [K, V], index: number, map: LinkedHashMap<K, V>) => A, initialValue: A): A {
let accumulator = initialValue;
let index = 0;
for (const entry of this) {
accumulator = callback(accumulator, entry, index, this);
index++;
}
return accumulator;
print() {
console.log([...this]);
}

@@ -743,3 +638,3 @@

*/
* [Symbol.iterator]() {
protected* _getIterator() {
let node = this._head;

@@ -752,6 +647,2 @@ while (node !== this._sentinel) {

print() {
console.log([...this]);
}
/**

@@ -758,0 +649,0 @@ * Time Complexity: O(1)

@@ -8,9 +8,11 @@ /**

import type { Comparator, DFSOrderPattern } from '../../types';
import type { Comparator, DFSOrderPattern, ElementCallback } from '../../types';
import { HeapOptions } from "../../types";
import { IterableElementBase } from "../base";
export class Heap<E = any> {
export class Heap<E = any> extends IterableElementBase<E> {
options: HeapOptions<E>;
constructor(elements?: Iterable<E>, options?: HeapOptions<E>) {
super();
const defaultComparator = (a: E, b: E) => {

@@ -343,34 +345,66 @@ if (!(typeof a === 'number' && typeof b === 'number')) {

* [Symbol.iterator]() {
for (const element of this.elements) {
yield element;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
forEach(callback: (element: E, index: number, heap: this) => void): void {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new Heap object containing elements that pass a given callback
* function.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the heap. It takes three arguments: the current element, the index of the current element, and the
* heap itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `Heap` object that contains the elements that pass
* the filter condition specified by the `callback` function.
*/
filter(callback: ElementCallback<E, boolean>, thisArg?: any): Heap<E> {
const filteredList = new Heap<E>();
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
filter(predicate: (element: E, index: number, heap: Heap<E>) => boolean): Heap<E> {
const filteredHeap: Heap<E> = new Heap<E>([], this.options);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
filteredHeap.push(el);
for (const current of this) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);
}
index++;
}
return filteredHeap;
return filteredList;
}
map<T>(callback: (element: E, index: number, heap: Heap<E>) => T, comparator: Comparator<T>): Heap<T> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new heap by applying a callback function to each element of the
* original heap.
* @param callback - The callback parameter is a function that will be called for each element in the
* original heap. It takes three arguments: the current element, the index of the current element,
* and the original heap itself. The callback function should return a value of type T, which will be
* added to the mapped heap.
* @param comparator - The `comparator` parameter is a function that is used to compare elements in
* the heap. It takes two arguments, `a` and `b`, and returns a negative number if `a` is less than
* `b`, a positive number if `a` is greater than `b`, or
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the callback function. It is used when you want to bind a
* specific object as the context for the callback function. If `thisArg` is not provided,
* `undefined` is used as
* @returns a new instance of the Heap class, which is created using the mapped elements from the
* original Heap.
*/
map<T>(callback: ElementCallback<E, T>, comparator: Comparator<T>, thisArg?: any): Heap<T> {
const mappedHeap: Heap<T> = new Heap<T>([], { comparator: comparator });
let index = 0;
for (const el of this) {
mappedHeap.add(callback(el, index, this));
mappedHeap.add(callback.call(thisArg, el, index, this));
index++;

@@ -381,15 +415,2 @@ }

reduce<T>(
callback: (accumulator: T, currentValue: E, currentIndex: number, heap: Heap<E>) => T,
initialValue: T
): T {
let accumulator: T = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
}
return accumulator;
}
/**

@@ -404,2 +425,8 @@ * Time Complexity: O(log n)

protected* _getIterator() {
for (const element of this.elements) {
yield element;
}
}
/**

@@ -406,0 +433,0 @@ * Time Complexity: O(n)

@@ -12,1 +12,2 @@ export * from './hash';

export * from './trie';
export * from './base';

@@ -0,1 +1,4 @@

import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -25,3 +28,3 @@ * data-structure-typed

export class DoublyLinkedList<E = any> {
export class DoublyLinkedList<E = any> extends IterableElementBase<E> {
/**

@@ -31,2 +34,3 @@ * The constructor initializes the linked list with an empty head, tail, and length.

constructor(elements?: Iterable<E>) {
super();
this._head = undefined;

@@ -729,37 +733,3 @@ this._tail = undefined;

/**
* The function returns an iterator that iterates over the values of a linked list.
*/
* [Symbol.iterator]() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback: (value: E, index: number, list: DoublyLinkedList<E>) => void): void {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)

@@ -769,16 +739,23 @@ */

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a DoublyLinkedList and returns a new DoublyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the DoublyLinkedList class.
* The `filter` function creates a new DoublyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element, returning only the elements for which the
* callback function returns true.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the DoublyLinkedList. It takes three arguments: the current element, the index of the current
* element, and the DoublyLinkedList itself. The callback function should return a boolean value
* indicating whether the current element should be included
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `DoublyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback: (value: E, index: number, list: DoublyLinkedList<E>) => boolean): DoublyLinkedList<E> {
filter(callback: ElementCallback<E, boolean>, thisArg?: any): DoublyLinkedList<E> {
const filteredList = new DoublyLinkedList<E>();
let index = 0;
for (const current of this) {
if (callback(current, index, this)) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);

@@ -797,17 +774,23 @@ }

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the DoublyLinkedList, returning a new
* DoublyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original DoublyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* DoublyLinkedList).
* @returns The `map` function is returning a new instance of `DoublyLinkedList<T>` that contains the mapped values.
* The `map` function creates a new DoublyLinkedList by applying a callback function to each element
* in the original list.
* @param callback - The callback parameter is a function that will be called for each element in the
* DoublyLinkedList. It takes three arguments: the current element, the index of the current element,
* and the DoublyLinkedList itself. The callback function should return a value that will be added to
* the new DoublyLinkedList that
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `DoublyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original `DoublyLinkedList`
* object.
*/
map<T>(callback: (value: E, index: number, list: DoublyLinkedList<E>) => T): DoublyLinkedList<T> {
map<T>(callback: ElementCallback<E, T>, thisArg?: any): DoublyLinkedList<T> {
const mappedList = new DoublyLinkedList<T>();
let index = 0;
for (const current of this) {
mappedList.push(callback(current, index, this));
mappedList.push(callback.call(thisArg, current, index, this));
index++;

@@ -824,29 +807,17 @@ }

print(): void {
console.log([...this]);
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
* The function returns an iterator that iterates over the values of a linked list.
*/
reduce<T>(callback: (accumulator: T, value: E, index: number, list: DoublyLinkedList<E>) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const current of this) {
accumulator = callback(accumulator, current, index, this);
index++;
protected* _getIterator(): IterableIterator<E> {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
return accumulator;
}
print(): void {
console.log([...this]);
}
}

@@ -0,1 +1,4 @@

import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -23,3 +26,3 @@ * data-structure-typed

export class SinglyLinkedList<E = any> {
export class SinglyLinkedList<E = any> extends IterableElementBase<E> {
/**

@@ -29,2 +32,3 @@ * The constructor initializes the linked list with an empty head, tail, and length.

constructor(elements?: Iterable<E>) {
super();
this._head = undefined;

@@ -675,37 +679,3 @@ this._tail = undefined;

/**
* The function returns an iterator that iterates over the values of a linked list.
*/
* [Symbol.iterator]() {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a linked list and applies a callback function to each element.
* @param callback - The callback parameter is a function that takes two arguments: value and index. The value argument
* represents the value of the current node in the linked list, and the index argument represents the index of the
* current node in the linked list.
*/
forEach(callback: (value: E, index: number, list: SinglyLinkedList<E>) => void): void {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)

@@ -715,16 +685,23 @@ */

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function iterates through a SinglyLinkedList and returns a new SinglyLinkedList containing only the
* elements that satisfy the given callback function.
* @param callback - The `callback` parameter is a function that takes a value of type `E` and returns a boolean value.
* It is used to determine whether a value should be included in the filtered list or not.
* @returns The filtered list, which is an instance of the SinglyLinkedList class.
* The `filter` function creates a new SinglyLinkedList by iterating over the elements of the current
* list and applying a callback function to each element to determine if it should be included in the
* filtered list.
* @param callback - The callback parameter is a function that will be called for each element in the
* list. It takes three arguments: the current element, the index of the current element, and the
* list itself. The callback function should return a boolean value indicating whether the current
* element should be included in the filtered list or not
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `filter` method is returning a new `SinglyLinkedList` object that contains the
* elements that pass the filter condition specified by the `callback` function.
*/
filter(callback: (value: E, index: number, list: SinglyLinkedList<E>) => boolean): SinglyLinkedList<E> {
filter(callback: ElementCallback<E, boolean>, thisArg?: any): SinglyLinkedList<E> {
const filteredList = new SinglyLinkedList<E>();
let index = 0;
for (const current of this) {
if (callback(current, index, this)) {
if (callback.call(thisArg, current, index, this)) {
filteredList.push(current);

@@ -737,2 +714,3 @@ }

/**

@@ -742,19 +720,21 @@ * Time Complexity: O(n), where n is the number of elements in the linked list.

*/
/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the SinglyLinkedList, returning a new
* SinglyLinkedList with the transformed values.
* @param callback - The callback parameter is a function that takes a value of type E (the type of values stored in
* the original SinglyLinkedList) and returns a value of type T (the type of values that will be stored in the mapped
* SinglyLinkedList).
* @returns The `map` function is returning a new instance of `SinglyLinkedList<T>` that contains the mapped values.
* The `map` function creates a new SinglyLinkedList by applying a callback function to each element
* of the original list.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the linked list. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `SinglyLinkedList` object that contains the results
* of applying the provided `callback` function to each element in the original list.
*/
map<T>(callback: (value: E, index: number, list: SinglyLinkedList<E>) => T): SinglyLinkedList<T> {
map<T>(callback: ElementCallback<E, T>, thisArg?: any): SinglyLinkedList<T> {
const mappedList = new SinglyLinkedList<T>();
let index = 0;
for (const current of this) {
mappedList.push(callback(current, index, this));
mappedList.push(callback.call(thisArg, current, index, this));
index++;

@@ -771,29 +751,14 @@ }

/**
* Time Complexity: O(n), where n is the number of elements in the linked list.
* Space Complexity: O(n)
*
* The `reduce` function iterates over a linked list and applies a callback function to each element, accumulating a
* single value.
* @param callback - The `callback` parameter is a function that takes two arguments: `accumulator` and `value`. It is
* used to perform a specific operation on each element of the linked list.
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It is the starting
* point for the reduction operation.
* @returns The `reduce` method is returning the final value of the accumulator after iterating through all the
* elements in the linked list.
*/
reduce<T>(callback: (accumulator: T, value: E, index: number, list: SinglyLinkedList<E>) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const current of this) {
accumulator = callback(accumulator, current, index, this);
index++;
}
return accumulator;
}
print(): void {
console.log([...this]);
}
protected* _getIterator(): IterableIterator<E> {
let current = this.head;
while (current) {
yield current.value;
current = current.next;
}
}
}

@@ -10,4 +10,5 @@ /**

import { IterableWithSizeOrLength } from "../../types";
import { ElementCallback, IterableWithSizeOrLength } from "../../types";
import { calcMinUnitsRequired, rangeCheck } from "../../utils";
import { IterableElementBase } from "../base";

@@ -21,3 +22,3 @@ /**

export class Deque<E> {
export class Deque<E> extends IterableElementBase<E> {
protected _bucketFirst = 0;

@@ -40,3 +41,3 @@ protected _firstInBucket = 0;

constructor(elements: IterableWithSizeOrLength<E> = [], bucketSize = (1 << 12)) {
super();
let _size: number;

@@ -707,45 +708,4 @@ if ('length' in elements) {

* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
* [Symbol.iterator]() {
for (let i = 0; i < this.size; ++i) {
yield this.getAt(i);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
*/
forEach(callback: (element: E, index: number, deque: this) => void) {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**

@@ -755,14 +715,19 @@ * Time Complexity: O(n)

*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Deque` object that contains only the elements
* that satisfy the given `predicate` function.
* The `filter` function creates a new deque containing elements from the original deque that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the deque itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* deque or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Deque` object that contains the elements that
* satisfy the given predicate function.
*/
filter(predicate: (element: E, index: number, deque: this) => boolean): Deque<E> {
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Deque<E> {
const newDeque = new Deque<E>([], this._bucketSize);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newDeque.push(el);

@@ -779,3 +744,2 @@ }

*/
/**

@@ -785,12 +749,16 @@ * Time Complexity: O(n)

*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Deque` object with the transformed elements.
* The `map` function creates a new Deque by applying a callback function to each element of the
* original Deque.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the deque. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns a new Deque object with the mapped values.
*/
map<T>(callback: (element: E, index: number, deque: this) => T): Deque<T> {
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Deque<T> {
const newDeque = new Deque<T>([], this._bucketSize);
let index = 0;
for (const el of this) {
newDeque.push(callback(el, index, this));
newDeque.push(callback.call(thisArg, el, index, this));
index++;

@@ -803,5 +771,9 @@ }

* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*/
print(): void {
console.log([...this])
}
/**

@@ -811,25 +783,11 @@ * Time Complexity: O(n)

*
* The `reduce` function iterates over the elements of a deque and applies a callback function to
* each element, accumulating a single value.
* @param callback - The `callback` parameter is a function that takes four arguments:
* @param {T} initialValue - The `initialValue` parameter is the initial value of the accumulator. It
* is the value that will be passed as the first argument to the `callback` function when reducing
* the elements of the deque.
* @returns the final value of the accumulator after iterating over all elements in the deque and
* applying the callback function to each element.
* The above function is an implementation of the iterator protocol in TypeScript, allowing the
* object to be iterated over using a for...of loop.
*/
reduce<T>(callback: (accumulator: T, element: E, index: number, deque: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
protected* _getIterator() {
for (let i = 0; i < this.size; ++i) {
yield this.getAt(i);
}
return accumulator;
}
print(): void {
console.log([...this])
}
/**

@@ -836,0 +794,0 @@ * Time Complexity: O(n)

@@ -7,39 +7,7 @@ /**

import { SinglyLinkedList } from '../linked-list';
import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
export class LinkedListQueue<E = any> extends SinglyLinkedList<E> {
export class Queue<E = any> extends IterableElementBase<E> {
/**
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
enqueue(value: E) {
this.push(value);
}
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue(): E | undefined {
return this.shift();
}
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst(): E | undefined {
return this.head?.value;
}
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek(): E | undefined {
return this.getFirst();
}
}
export class Queue<E = any> {
/**
* The constructor initializes an instance of a class with an optional array of elements and sets the offset to 0.

@@ -51,2 +19,3 @@ * @param {E[]} [elements] - The `elements` parameter is an optional array of elements of type `E`. If provided, it

constructor(elements?: E[]) {
super();
this._nodes = elements || [];

@@ -309,11 +278,5 @@ this._offset = 0;

* [Symbol.iterator]() {
for (const item of this.nodes) {
yield item;
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*/

@@ -323,15 +286,26 @@

* Time Complexity: O(n)
* Space Complexity: O(1)
* Space Complexity: O(n)
*
* The `forEach` function iterates over each element in a deque and applies a callback function to
* each element.
* @param callback - The callback parameter is a function that will be called for each element in the
* deque. It takes three parameters:
* The `filter` function creates a new `Queue` object containing elements from the original `Queue`
* that satisfy a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the queue itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* queue or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Queue` object that contains the elements that
* satisfy the given predicate function.
*/
forEach(callback: (element: E, index: number, queue: this) => void) {
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Queue<E> {
const newDeque = new Queue<E>([]);
let index = 0;
for (const el of this) {
callback(el, index, this);
if (predicate.call(thisArg, el, index, this)) {
newDeque.push(el);
}
index++;
}
return newDeque;
}

@@ -343,3 +317,2 @@

*/
/**

@@ -349,16 +322,17 @@ * Time Complexity: O(n)

*
* The `filter` function creates a new deque containing only the elements that satisfy the given
* predicate function.
* @param predicate - The `predicate` parameter is a function that takes three arguments: `element`,
* `index`, and `deque`.
* @returns The `filter` method is returning a new `Queue` object that contains only the elements
* that satisfy the given `predicate` function.
* The `map` function takes a callback function and applies it to each element in the queue,
* returning a new queue with the results.
* @param callback - The callback parameter is a function that will be called for each element in the
* queue. It takes three arguments: the current element, the index of the current element, and the
* queue itself. The callback function should return a new value that will be added to the new queue.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new `Queue` object with the transformed elements.
*/
filter(predicate: (element: E, index: number, queue: this) => boolean): Queue<E> {
const newDeque = new Queue<E>([]);
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Queue<T> {
const newDeque = new Queue<T>([]);
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
newDeque.push(el);
}
newDeque.push(callback.call(thisArg, el, index, this));
index++;

@@ -374,30 +348,41 @@ }

protected* _getIterator() {
for (const item of this.nodes) {
yield item;
}
}
}
export class LinkedListQueue<E = any> extends SinglyLinkedList<E> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the deque,
* returning a new deque with the results.
* @param callback - The `callback` parameter is a function that takes three arguments:
* @returns The `map` method is returning a new `Queue` object with the transformed elements.
* The enqueue function adds a value to the end of an array.
* @param {E} value - The value parameter represents the value that you want to add to the queue.
*/
map<T>(callback: (element: E, index: number, queue: this) => T): Queue<T> {
const newDeque = new Queue<T>([]);
let index = 0;
for (const el of this) {
newDeque.push(callback(el, index, this));
index++;
}
return newDeque;
enqueue(value: E) {
this.push(value);
}
reduce<T>(callback: (accumulator: T, element: E, index: number, queue: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
}
return accumulator;
/**
* The `dequeue` function removes and returns the first element from a queue, or returns undefined if the queue is empty.
* @returns The method is returning the element at the front of the queue, or undefined if the queue is empty.
*/
dequeue(): E | undefined {
return this.shift();
}
}
/**
* The `getFirst` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `getFirst()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
getFirst(): E | undefined {
return this.head?.value;
}
/**
* The `peek` function returns the value of the head node in a linked list, or `undefined` if the list is empty.
* @returns The `peek()` method is returning the value of the `head` node if it exists, otherwise it returns `undefined`.
*/
peek(): E | undefined {
return this.getFirst();
}
}

@@ -0,1 +1,4 @@

import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -6,3 +9,3 @@ * @license MIT

*/
export class Stack<E = any> {
export class Stack<E = any> extends IterableElementBase<E> {
/**

@@ -15,2 +18,3 @@ * The constructor initializes an array of elements, which can be provided as an optional parameter.

constructor(elements?: Iterable<E>) {
super();
this._elements = [];

@@ -159,29 +163,27 @@ if (elements) {

/**
* Custom iterator for the Stack class.
* @returns An iterator object.
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
* [Symbol.iterator]() {
for (let i = 0; i < this.elements.length; i++) {
yield this.elements[i];
}
}
/**
* Applies a function to each element of the stack.
* @param {function(E): void} callback - A function to apply to each element.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function creates a new stack containing elements from the original stack that satisfy
* a given predicate function.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* the current element being iterated over, the index of the current element, and the stack itself.
* It should return a boolean value indicating whether the element should be included in the filtered
* stack or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `predicate` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `predicate` function. If `thisArg` is
* @returns The `filter` method is returning a new `Stack` object that contains the elements that
* satisfy the given predicate function.
*/
forEach(callback: (element: E, index: number, stack: this) => void): void {
let index = 0;
for (const el of this) {
callback(el, index, this);
index++;
}
}
filter(predicate: (element: E, index: number, stack: this) => boolean): Stack<E> {
filter(predicate: ElementCallback<E, boolean>, thisArg?: any): Stack<E> {
const newStack = new Stack<E>();
let index = 0;
for (const el of this) {
if (predicate(el, index, this)) {
if (predicate.call(thisArg, el, index, this)) {
newStack.push(el);

@@ -194,8 +196,25 @@ }

/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
map<T>(callback: (element: E, index: number, stack: this) => T): Stack<T> {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function takes a callback function and applies it to each element in the stack,
* returning a new stack with the results.
* @param callback - The `callback` parameter is a function that will be called for each element in
* the stack. It takes three arguments:
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` method is returning a new `Stack` object.
*/
map<T>(callback: ElementCallback<E, T>, thisArg?: any): Stack<T> {
const newStack = new Stack<T>();
let index = 0;
for (const el of this) {
newStack.push(callback(el, index, this));
newStack.push(callback.call(thisArg, el, index, this));
index++;

@@ -206,15 +225,15 @@ }

reduce<T>(callback: (accumulator: T, element: E, index: number, stack: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const el of this) {
accumulator = callback(accumulator, el, index, this);
index++;
}
return accumulator;
}
print(): void {
console.log([...this]);
}
/**
* Custom iterator for the Stack class.
* @returns An iterator object.
*/
protected* _getIterator() {
for (let i = 0; i < this.elements.length; i++) {
yield this.elements[i];
}
}
}

@@ -9,2 +9,5 @@ /**

import { IterableElementBase } from "../base";
import { ElementCallback } from "../../types";
/**

@@ -29,4 +32,5 @@ * TrieNode represents a node in the Trie data structure. It holds a character key, a map of children nodes,

*/
export class Trie {
export class Trie extends IterableElementBase<string> {
constructor(words?: string[], caseSensitive = true) {
super();
this._root = new TrieNode('');

@@ -344,28 +348,26 @@ this._caseSensitive = caseSensitive;

* [Symbol.iterator](): IterableIterator<string> {
function* _dfs(node: TrieNode, path: string): IterableIterator<string> {
if (node.isEnd) {
yield path;
}
for (const [char, childNode] of node.children) {
yield* _dfs(childNode, path + char);
}
}
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
yield* _dfs(this.root, '');
}
forEach(callback: (word: string, index: number, trie: this) => void): void {
let index = 0;
for (const word of this) {
callback(word, index, this);
index++;
}
}
filter(predicate: (word: string, index: number, trie: this) => boolean): string[] {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `filter` function takes a predicate function and returns a new array containing all the
* elements for which the predicate function returns true.
* @param predicate - The `predicate` parameter is a callback function that takes three arguments:
* `word`, `index`, and `this`. It should return a boolean value indicating whether the current
* element should be included in the filtered results or not.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that allows you to
* specify the value of `this` within the `predicate` function. It is used when you want to bind a
* specific object as the context for the `predicate` function. If `thisArg` is provided, it will be
* @returns The `filter` method is returning an array of strings (`string[]`).
*/
filter(predicate: ElementCallback<string, boolean>, thisArg?: any): string[] {
const results: string[] = [];
let index = 0;
for (const word of this) {
if (predicate(word, index, this)) {
if (predicate.call(thisArg, word, index, this)) {
results.push(word);

@@ -378,7 +380,25 @@ }

map(callback: (word: string, index: number, trie: this) => string): Trie {
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*/
/**
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* The `map` function creates a new Trie by applying a callback function to each element in the Trie.
* @param callback - The callback parameter is a function that will be called for each element in the
* Trie. It takes three arguments: the current element in the Trie, the index of the current element,
* and the Trie itself. The callback function should return a new value for the element.
* @param {any} [thisArg] - The `thisArg` parameter is an optional argument that specifies the value
* to be used as `this` when executing the `callback` function. If `thisArg` is provided, it will be
* passed as the `this` value to the `callback` function. If `thisArg` is
* @returns The `map` function is returning a new Trie object.
*/
map(callback: ElementCallback<string, string>, thisArg?: any): Trie {
const newTrie = new Trie();
let index = 0;
for (const word of this) {
newTrie.add(callback(word, index, this));
newTrie.add(callback.call(thisArg, word, index, this));
index++;

@@ -389,12 +409,2 @@ }

reduce<T>(callback: (accumulator: T, word: string, index: number, trie: this) => T, initialValue: T): T {
let accumulator = initialValue;
let index = 0;
for (const word of this) {
accumulator = callback(accumulator, word, index, this);
index++;
}
return accumulator;
}
print() {

@@ -404,2 +414,15 @@ console.log([...this]);

protected* _getIterator(): IterableIterator<string> {
function* _dfs(node: TrieNode, path: string): IterableIterator<string> {
if (node.isEnd) {
yield path;
}
for (const [char, childNode] of node.children) {
yield* _dfs(childNode, path + char);
}
}
yield* _dfs(this.root, '');
}
/**

@@ -406,0 +429,0 @@ * Time Complexity: O(M), where M is the length of the input string.

@@ -12,1 +12,2 @@ export * from './binary-tree';

export * from './trie';
export * from './base';

Sorry, the diff of this file is too big to display

Sorry, the diff of this file is too big to display

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc