scikit-learn
Node.js wrapper of scikit-learn
Installation
npm install scikit-learn
Usage
var scikit = require('scikit-learn')
Example
var inspect = require('inspect-stream');
var arrayify = require('arrayify-merge.s');
var slice = require('slice-flow.s');
var scikit = require('scikit-learn');
var features = scikit.dataset('load_digits.data');
var labels = scikit.dataset('load_digits.target');
var trainingSet = arrayify();
features.pipe(trainingSet);
labels.pipe(trainingSet);
var clf = scikit.svm('SVC', {
gamma: 0.001,
C: 100
});
trainingSet
.pipe(slice([0, -1]))
.pipe(clf)
.on('error', function (err) {
console.log(err);
})
.on('end', function () {
var predict = clf.predict();
var features = scikit.dataset('load_digits.data');
features.pipe(slice(-1))
.pipe(predict)
.pipe(inspect());
});
API
scikit.dataset(name, options)
- name
String
Name of method of sklearn.datasets
on python side
concatenated by dot with name of dataset's subset
Ex: 'load_digits.target' - options
Object
Options of method
Returns readable stream of dataset
Fit streams
All fit streams are transform streams that acts like writable.
So you must listen on end
event instead of finish
to be sure that training finished
Accepts flow of arrays like [features, label]
where 'features' is array of features and label is... label
Also fit stream have event 'model' that emits with trained model.
Model is Buffer
containing pickled object
Fit stream have method predict
that returns Predict stream
scikit.svm(name, options)
- name
String
Name of method of sklearn.svm
- options
Object
Options for estimator
Predict streams
Predict stream is transform stream that accepts flow of arrays of features
and outputs predictions