
Security News
npm ‘is’ Package Hijacked in Expanding Supply Chain Attack
The ongoing npm phishing campaign escalates as attackers hijack the popular 'is' package, embedding malware in multiple versions.
send-prompt
Advanced tools
A unified TypeScript library for AI model interactions with standardized interfaces and function calling.
A TypeScript library for interacting with models across providers with standardized interfaces and tool calling.
Related projects:
import { sendPrompt } from "send-prompt";
import { AI_PROVIDERS, ModelEnum } from "llm-info";
const response = await sendPrompt(
{
messages: [
{ role: "user", content: "What's the weather like in Singapore?" },
],
tools: [weatherTool],
},
{
model: ModelEnum["gpt-4.1"],
// model: ModelEnum["claude-3-7-sonnet-20250219"],
// model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.OPENAI,
// provider: AI_PROVIDERS.ANTHROPIC,
// provider: AI_PROVIDERS.GOOGLE,
apiKey: process.env.API_KEY,
}
);
console.log(response.message.content);
# Install llm-info to get the model and provider information
npm install llm-info
# Install send-prompt to send prompt to models
npm install send-prompt
The same function sendPrompt
works across all providers:
import { sendPrompt } from "send-prompt";
import { AI_PROVIDERS, ModelEnum } from "llm-info";
// OpenAI
const openaiResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
// Anthropic
const anthropicResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["claude-3-7-sonnet-20250219"],
provider: AI_PROVIDERS.ANTHROPIC,
apiKey: "your-anthropic-api-key",
}
);
// Google
const googleResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE,
apiKey: "your-google-api-key",
}
);
// Google Vertex AI (requires gcloud CLI authentication)
// https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstarts/quickstart-multimodal
const googleVertexResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE_VERTEX_AI,
vertexai: true,
project: process.env.GOOGLE_CLOUD_PROJECT!, // Your Google Cloud project ID
location: process.env.GOOGLE_CLOUD_LOCATION!, // Your Google Cloud location (e.g., "us-central1")
}
);
// OpenRouter
const openrouterResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "meta-llama/llama-4-scout:free",
provider: AI_PROVIDERS.OPENROUTER,
apiKey: "your-openrouter-api-key",
headers: {
"HTTP-Referer": "https://eval.16x.engineer/",
"X-Title": "16x Eval",
},
}
);
// Fireworks
const fireworksResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "accounts/fireworks/models/deepseek-v3-0324",
provider: AI_PROVIDERS.FIREWORKS,
apiKey: "your-fireworks-api-key",
}
);
// DeepSeek
const deepseekResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "deepseek-chat",
provider: AI_PROVIDERS.DEEPSEEK,
apiKey: "your-deepseek-api-key",
}
);
// Custom Provider
const customResponse = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
systemPrompt: "You are a helpful assistant.",
},
{
customModel: "custom-model",
provider: "custom",
baseURL: "https://your-custom-api.com/v1",
apiKey: "your-custom-api-key",
}
);
// All responses have the same structure
console.log(openaiResponse.message.content);
The model
field is an enum of all models supported by the library, this is useful to avoid typos and to get the correct model information.
In case you want to use a model that is not yet available in the enum, you can use customModel
field instead. This is supported for all first party providers (OpenAI, Anthropic, Google).
// Using custom model string for new models
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, who are you?" }],
},
{
customModel: "gpt-4o-mini", // Custom model string
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
Note that the model
and customModel
fields are mutually exclusive.
You can send images to models that support vision capabilities:
const imageResponse = await sendPrompt(
{
messages: [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: {
url: "...", // base64 image data
},
},
],
},
],
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
// Define your tool
const calculatorTool = {
type: "function",
function: {
name: "calculator",
description: "Perform basic arithmetic calculations",
parameters: {
type: "object",
properties: {
operation: {
type: "string",
enum: ["add", "subtract", "multiply", "divide"],
description: "The arithmetic operation to perform",
},
a: {
type: "number",
description: "First number",
},
b: {
type: "number",
description: "Second number",
},
},
required: ["operation", "a", "b"],
additionalProperties: false,
},
strict: true,
},
};
const response = await sendPrompt(
{
messages: [{ role: "user", content: "What is 5 plus 3?" }],
tools: [calculatorTool],
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
// Expected response structure:
// {
// tool_calls: [
// {
// id: "call_123",
// type: "function",
// function: {
// name: "calculator",
// arguments: '{"operation":"add","a":5,"b":3}'
// }
// }
// ]
// }
// Handle the function call
if (response.tool_calls) {
const toolCall = response.tool_calls[0];
console.log("Tool called:", toolCall.function.name);
console.log("Arguments:", JSON.parse(toolCall.function.arguments));
}
You can pass custom headers to providers using the headers
option:
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Hello" }],
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-api-key",
headers: {
"Custom-Header": "value",
"X-Title": "My App",
},
}
);
You can control the randomness of the model's responses using the temperature
parameter. Temperature ranges from 0 to 2, where lower values make the output more focused and deterministic, while higher values make it more random and creative:
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Write a creative story" }],
temperature: 0.8, // More creative and random
},
{
model: ModelEnum["gpt-4.1"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-api-key",
}
);
// For more deterministic responses
const deterministicResponse = await sendPrompt(
{
messages: [{ role: "user", content: "What is 2 + 2?" }],
temperature: 0.1, // More focused and deterministic
},
{
model: ModelEnum["claude-3-7-sonnet-20250219"],
provider: AI_PROVIDERS.ANTHROPIC,
apiKey: "your-api-key",
}
);
The temperature parameter is supported across all providers (OpenAI, Anthropic, Google, OpenRouter, Fireworks, DeepSeek, Azure OpenAI, and custom providers). If not specified, each provider will use its default temperature value.
For Anthropic models, you can control the maximum number of tokens in the response using the anthropicMaxTokens
option:
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Write a long story" }],
anthropicMaxTokens: 2000, // Limit response to 2000 tokens
},
{
model: ModelEnum["claude-3-7-sonnet-20250219"],
provider: AI_PROVIDERS.ANTHROPIC,
apiKey: "your-anthropic-api-key",
}
);
If not specified, it will use the model's default output token limit or 4096 tokens, whichever is smaller. When using function calling, it will default to 4096 tokens.
For providers that support it (like DeepSeek), you can extract the model's reasoning from the response:
const response = await sendPrompt(
{
messages: [
{ role: "user", content: "Solve this math problem: 2x + 5 = 15" },
],
},
{
model: ModelEnum["deepseek-reasoner"],
provider: AI_PROVIDERS.DEEPSEEK,
apiKey: "your-api-key",
}
);
if (response.reasoning) {
console.log("Model's reasoning:", response.reasoning);
}
For OpenRouter, you can control provider routing using the providerOptions
field. This allows you to specify which providers to use, their order, and which ones to avoid:
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Hello, world!" }],
},
{
provider: AI_PROVIDERS.OPENROUTER,
customModel: "openai/gpt-4o-mini",
apiKey: "your-openrouter-api-key",
providerOptions: {
// Specify the order of providers to try
order: ["openai", "azure"],
// Only allow specific providers
only: ["openai", "azure"],
// Ignore specific providers
ignore: ["fireworks"],
},
}
);
Available Provider Options:
order
: Array of provider slugs to try in order (e.g., ["openai", "azure"]
)only
: Array of provider slugs to allow for this request (e.g., ["openai"]
)ignore
: Array of provider slugs to skip for this request (e.g., ["fireworks"]
)You can use these options individually or combine them:
// Use only the order preference
const orderResponse = await sendPrompt(
{ messages: [{ role: "user", content: "Hello!" }] },
{
provider: AI_PROVIDERS.OPENROUTER,
customModel: "openai/gpt-4o-mini",
apiKey: "your-api-key",
providerOptions: {
order: ["openai", "azure"]
}
}
);
// Restrict to specific providers only
const restrictedResponse = await sendPrompt(
{ messages: [{ role: "user", content: "Hello!" }] },
{
provider: AI_PROVIDERS.OPENROUTER,
customModel: "openai/gpt-4o-mini",
apiKey: "your-api-key",
providerOptions: {
only: ["openai"]
}
}
);
// Ignore certain providers
const filteredResponse = await sendPrompt(
{ messages: [{ role: "user", content: "Hello!" }] },
{
provider: AI_PROVIDERS.OPENROUTER,
customModel: "meta-llama/llama-3.1-8b-instruct",
apiKey: "your-api-key",
providerOptions: {
ignore: ["fireworks", "together"]
}
}
);
You can stream responses from supported providers to get real-time content as it's generated. Streaming is supported for all providers.
const response = await sendPrompt(
{
messages: [{ role: "user", content: "Write a short story about a robot" }],
stream: true,
onStreamingContent: (content: string) => {
// This callback is called for each chunk of content
process.stdout.write(content);
},
},
{
model: ModelEnum["gpt-4o-mini"],
provider: AI_PROVIDERS.OPENAI,
apiKey: "your-openai-api-key",
}
);
// The function still returns the complete response at the end
console.log("\n\nComplete response:", response.message.content);
console.log("Duration:", response.durationMs, "ms");
if (response.usage) {
console.log("Token usage:", response.usage);
}
Streaming Limitations:
tools
parameter)The response from sendPrompt
follows a standardized format across all providers:
message
: The main response contenttool_calls
: Any function calls made by the modelreasoning
: The model's reasoning process (if available)usage
: Token usage information
promptTokens
: Number of tokens in the input messagesthoughtsTokens
: Number of tokens used for reasoning (if available)completionTokens
: Number of tokens in the model's response (includes thoughts tokens)completionTokensWithoutThoughts
: Number of tokens in the visible output only (excludes reasoning tokens)totalTokens
: Total tokens used (includes thoughts tokens)durationMs
: The time taken by the API call in millisecondsExample response (non-reasoning model):
{
message: {
role: "assistant",
content: "I am a helpful assistant."
},
usage: {
completionTokens: 10,
completionTokensWithoutThoughts: 10, // Same as completionTokens for non-reasoning models
promptTokens: 20,
totalTokens: 30,
thoughtsTokens: 0
},
durationMs: 1234
}
Example response (reasoning model like XAI's Grok):
{
message: {
role: "assistant",
content: "The answer is 4."
},
usage: {
completionTokens: 150, // Includes both visible output and reasoning
completionTokensWithoutThoughts: 25, // Only the visible output tokens
promptTokens: 10,
totalTokens: 285, // May include additional overhead
thoughtsTokens: 125 // Internal reasoning tokens
},
durationMs: 2500
}
For Google's Gemini models, you can handle multi-round tool calls by including function call and response messages in the conversation:
// First round - model makes a function call
const firstResponse = await sendPrompt(
{
messages: [{ role: "user", content: "What is 15 plus 32?" }],
tools: [calculatorTool],
toolCallMode: "AUTO",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE,
apiKey: "your-google-api-key",
}
);
// Handle the function call and get the result
if (firstResponse.tool_calls) {
const toolCall = firstResponse.tool_calls[0];
const args = JSON.parse(toolCall.function.arguments);
const result = calculate(args.operation, args.a, args.b); // Your calculation function
// Second round - include function call and response in messages
const secondResponse = await sendPrompt(
{
messages: [
{ role: "user", content: "What is 15 plus 32?" },
{
role: "google_function_call",
id: toolCall.id,
name: toolCall.function.name,
args: args,
},
{
role: "google_function_response",
id: toolCall.id,
name: toolCall.function.name,
response: { result },
},
],
tools: [calculatorTool],
toolCallMode: "AUTO",
},
{
model: ModelEnum["gemini-2.5-pro-exp-03-25"],
provider: AI_PROVIDERS.GOOGLE,
apiKey: "your-google-api-key",
}
);
// The model will now respond with the final answer
console.log("Final response:", secondResponse.message.content);
}
The multi-round tool calling process involves:
FAQs
A unified TypeScript library for AI model interactions with standardized interfaces and function calling.
We found that send-prompt demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The ongoing npm phishing campaign escalates as attackers hijack the popular 'is' package, embedding malware in multiple versions.
Security News
A critical flaw in the popular npm form-data package could allow HTTP parameter pollution, affecting millions of projects until patched versions are adopted.
Security News
Bun 1.2.19 introduces isolated installs for smoother monorepo workflows, along with performance boosts, new tooling, and key compatibility fixes.