string-comparison
Advanced tools
Comparing version 1.0.5 to 1.0.6
{ | ||
"name": "string-comparison", | ||
"version": "1.0.5", | ||
"version": "1.0.6", | ||
"description": "A library implementing different string similarity", | ||
@@ -5,0 +5,0 @@ "main": "./lib/index.js", |
@@ -8,4 +8,28 @@ | ||
[TOC] | ||
- [Download & Usage](#download--usage) | ||
- [OverView](#overview) | ||
- [Normalized, metric, similarity and distance](#normalized-metric-similarity-and-distance) | ||
- [(Normalized) similarity and distance](#normalized-similarity-and-distance) | ||
- [Levenshtein](#levenshtein) | ||
- [Longest Common Subsequence](#longest-common-subsequence) | ||
- [Metric Longest Common Subsequence](#metric-longest-common-subsequence) | ||
- [Cosine similarity](#cosine-similarity) | ||
- [Sorensen-Dice coefficient](#sorensen-dice-coefficient) | ||
- [API](#api) | ||
- [similarity](#similarity) | ||
- [params](#params) | ||
- [return](#return) | ||
- [distance](#distance) | ||
- [params](#params-1) | ||
- [return](#return-1) | ||
- [sortMatch](#sortmatch) | ||
- [params](#params-2) | ||
- [return](#return-2) | ||
- [Params](#params) | ||
- [Return](#return) | ||
- [Release Notes](#release-notes) | ||
- [1.x version](#1x-version) | ||
- [MIT](#mit) | ||
## Download & Usage | ||
@@ -37,3 +61,4 @@ | ||
## OverViews | ||
## OverView | ||
The main characteristics of each implemented algorithm are presented below. The "cost" column gives an estimation of the computational cost to compute the similarity between two strings of length m and n respectively. | ||
@@ -50,2 +75,3 @@ | ||
## Normalized, metric, similarity and distance | ||
Although the topic might seem simple, a lot of different algorithms exist to measure text similarity or distance. Therefore the library defines some interfaces to categorize them. | ||
@@ -124,2 +150,3 @@ | ||
## Metric Longest Common Subsequence | ||
Distance metric based on Longest Common Subsequence, from the notes "An LCS-based string metric" by Daniel Bakkelund. | ||
@@ -149,2 +176,3 @@ http://heim.ifi.uio.no/~danielry/StringMetric.pdf | ||
``` | ||
## Cosine similarity | ||
@@ -158,2 +186,3 @@ | ||
## Sorensen-Dice coefficient | ||
Similar to Jaccard index, but this time the similarity is computed as 2 * |V1 inter V2| / (|V1| + |V2|). | ||
@@ -163,3 +192,2 @@ | ||
## API | ||
@@ -170,7 +198,7 @@ * `similarity`. | ||
### `similarity` | ||
### similarity | ||
Implementing algorithms define a similarity between strings | ||
#### Params | ||
#### params | ||
@@ -180,11 +208,11 @@ 1. thanos [String] | ||
#### Return | ||
#### return | ||
Return a similarity between 0.0 and 1.0 | ||
### `distance` | ||
### distance | ||
Implementing algorithms define a distance between strings (0 means strings are identical) | ||
#### Params | ||
#### params | ||
@@ -194,10 +222,23 @@ 1. thanos [String] | ||
#### Return | ||
#### return | ||
Return a number | ||
### `sortMatch` | ||
### sortMatch | ||
介绍 | ||
#### params | ||
1. thanos [String] | ||
2. avengers [Array] | ||
#### return | ||
Return an array of objects | ||
```js | ||
[ | ||
{ member: 'edward', index: 0, rating: 0.5 }, | ||
{ member: 'theatre', index: 2, rating: 0.6153846153846154 }, | ||
{ member: 'sealed', index: 1, rating: 0.8333333333333334 } | ||
] | ||
``` | ||
#### Params | ||
@@ -233,5 +274,3 @@ | ||
## MIT | ||
[MIT](./LICENCE) |
58576
265