.. image:: https://travis-ci.org/SunPower/Carousel.svg?branch=master
:target: https://travis-ci.org/SunPower/Carousel
Carousel - Model Simulation Framework
Carousel ia a framework for simulating mathematical models that decouples
the models from the simulation implementation. It takes care of boilerplate
routines such as loading data from various sources into a key store that can be
used from any calculation, determining the correct order of calculations,
stepping through dynamic simulations and generating output reports and
visualizations, so that you can focus on developing models and don't have to
worry about how to add new models or how to integrate changes.
Requirements
Pint <http://pint.readthedocs.org/en/latest/>
_NumPy <http://www.numpy.org/>
_h5py <http://www.h5py.org/>
_xlrd <http://www.python-excel.org/>
_UncertaintyWrapper <http://sunpower.github.io/UncertaintyWrapper/>
_
Installation
Carousel releases are on PyPI <https://pypi.python.org/pypi/Carousel>
_ and on
GitHub <https://github.com/SunPower/Carousel/releases>
_. You can use either
pip
, conda
, or distutils
to install Carousel.
pip <https://pip.pypa.io/en/stable/>
_ ::
$ pip install Carousel
Extract the archive to use disutils <https://docs.python.org/2/install/>
_ ::
$ python setup.py install
SunPower conda channel <https://anaconda.org/sunpower/carousel>
_ ::
$ conda install -c sunpower Carousel
Documentation
Carousel documentation <https://sunpower.github.io/Carousel>
_ is
online. It's also included in the distribution and can be built using
Sphinx <http://www.sphinx-doc.org/en/stable/>
_ by running the Makefile
found in the docs
folder of the Carousel package. Once built documentation
will be found in the _build
folder under the tree corresponding to the type
of documentation built. EG: HTML documentation is in docs/_build/html
.
Contributions
Carousel source code <https://github.com/SunPower/Carousel>
_ is
online. Fork it and report
issues <https://github.com/SunPower/Carousel/issues>
, make suggestions or
create pull requests. Discuss the roadmap or download presentations on the
wiki <https://github.com/SunPower/Carousel/wiki>
History
The
change log for all releases <https://github.com/SunPower/Carousel/releases>
_
is on GitHub.
Quickstart Example
Define data, outputs, formulas, calculations, simulations and model::
#! python
from carousel.core.data_sources import DataSource, DataParameter
from carousel.core.outputs import Output, OutputParameter
from carousel.core.formulas import Formula, FormulaParameter
from carousel.core.calculations import Calc, CalcParameter
from carousel.core.simulations import Simulation, SimParameter
from carousel.core.models import Model, ModelParameter
from carousel.contrib.readers import ArgumentReader
from carousel.core import UREG
import numpy as np
import os
DATA = {'PythagoreanData': {'adjacent_side': 3.0, 'opposite_side': 4.0}}
class PythagoreanData(DataSource):
adjacent_side = DataParameter(units='cm', uncertainty=1.0)
opposite_side = DataParameter(units='cm', uncertainty=1.0)
def __prepare_data__(self):
for k, v in self.parameters.iteritems():
self.uncertainty[k] = {k: v['uncertainty'] * UREG.percent}
class Meta:
data_cache_enabled = False
data_reader = ArgumentReader
class PythagoreanOutput(Output):
hypotenuse = OutputParameter(units='cm')
def f_pythagorean(a, b):
a, b = np.atleast_1d(a), np.atleast_1d(b)
return np.sqrt(a * a + b * b).reshape(1, -1)
class PythagoreanFormula(Formula):
f_pythagorean = FormulaParameter(
units=[('=A', ), ('=A', '=A')],
isconstant=[]
)
class Meta:
module = __name__
class PythagoreanCalc(Calc):
pythagorean_thm = CalcParameter(
formula='f_pythagorean',
args={'data': {'a': 'adjacent_side', 'b': 'opposite_side'}},
returns=['hypotenuse']
)
class PythagoreanSim(Simulation):
settings = SimParameter(
ID='Pythagorean Theorem',
commands=['start', 'load', 'run'],
sim_length=[0, 'hour'],
write_fields={
'data': ['adjacent_side', 'opposite_side'],
'outputs': ['hypotenuse']
}
)
class PythagoreanModel(Model):
data = ModelParameter(sources=[PythagoreanData])
outputs = ModelParameter(sources=[PythagoreanOutput])
formulas = ModelParameter(sources=[PythagoreanFormula])
calculations = ModelParameter(sources=[PythagoreanCalc])
simulations = ModelParameter(sources=[PythagoreanSim])
class Meta:
modelpath = os.path.dirname(__file__)
if __name__ == '__main__':
m = PythagoreanModel()
m.command('run', data=DATA)
out_reg = m.registries['outputs']
fmt = {
'output': out_reg['hypotenuse'],
'uncertainty': out_reg.uncertainty['hypotenuse']['hypotenuse']
}
print 'hypotenuse = %(output)s +/- %(uncertainty)s' % fmt
This is the MCVE <https://stackoverflow.com/help/mcve>
_ of a Carousel model.