Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

GradientTransformation

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

GradientTransformation

A JAX-based L-BFGS optimizer

  • 1.0.0
  • PyPI
  • Socket score

Maintainers
1

L-BFGS optimizer written with JAX

Features

  • Implements the Limited-memory BFGS algorithm.
  • JIT/vmap/pmap compatible for performance with JAX.
  • Note requirements.txt is setup for JAX[CPU]

Usage

Define a function to minimize

def func(x): 
    jnp.sum((-1*coefficients + x)**2)

Call Lbfgs -f: function to minimize -m: number of previous iterations to store in memory -tol: tolerance of convergence

optimizer = Lbfgs(f=func, m=10, tol=1e-6)

iterate to find minimum

# Initialize optimizer state
opt_state = optimizer.init(x0)

@jax.jit
def opt_step(carry, _):
    opt_state, losses = carry
    opt_state = optimizer.update(opt_state)
    losses = losses.at[opt_state.k].set(loss(opt_state.position))
    return (opt_state, losses), _

iterations=10000   #<-- A lot of iterations!!!
losses = jnp.zeros((iterations,))
(final_state, losses), _ = jax.lax.scan(opt_step, (opt_state,losses), None, length=iterations)
#note losses will be the length of iterations
losses = jnp.array(jnp.where(losses == 0, jnp.nan, losses))

output

[-7.577116e-15  1.000000e+00  2.000000e+00  3.000000e+00  4.000000e+00
  5.000000e+00  6.000000e+00  7.000000e+00  8.000000e+00  9.000000e+00
  1.000000e+01  1.100000e+01  1.200000e+01  1.300000e+01  1.400000e+01
  1.500000e+01  1.600000e+01  1.700000e+01  1.800000e+01  1.900000e+01
  2.000000e+01  2.100000e+01  2.200000e+01  2.300000e+01  2.400000e+01
  2.500000e+01  2.600000e+01  2.700000e+01  2.800000e+01  2.900000e+01
  3.000000e+01  3.100000e+01  3.200000e+01  3.300000e+01  3.400000e+01
  3.500000e+01  3.600000e+01  3.700000e+01  3.800000e+01  3.900000e+01
  4.000000e+01  4.100000e+01  4.200000e+01  4.300000e+01  4.400000e+01
  4.500000e+01  4.600000e+01  4.700000e+01  4.800000e+01  4.900000e+01
  5.000000e+01  5.100000e+01  5.200000e+01  5.300000e+01  5.400000e+01
  5.500000e+01  5.600000e+01  5.700000e+01  5.800000e+01  5.900000e+01
  6.000000e+01  6.100000e+01  6.200000e+01  6.300000e+01  6.400000e+01
  6.500000e+01  6.600000e+01  6.700000e+01  6.800000e+01  6.900000e+01
  7.000000e+01  7.100000e+01  7.200000e+01  7.300000e+01  7.400000e+01
  7.500000e+01  7.600000e+01  7.700000e+01  7.800000e+01  7.900000e+01
  8.000000e+01  8.100000e+01  8.200000e+01  8.300000e+01  8.400000e+01
  8.500000e+01  8.600000e+01  8.700000e+01  8.800000e+01  8.900000e+01
  9.000000e+01  9.100000e+01  9.200000e+01  9.300000e+01  9.400000e+01
  9.500000e+01  9.600000e+01  9.700000e+01  9.800000e+01  9.900000e+01]

Function value at minimum: 5.7412694e-29
k:  2   #<-- stops early if gradient norm is less than tol!!

NOTE: Examples has the quadratic function and the Rosenbrock function.
1000-dimensional Rosenbrock solved in 4038 steps

Installation

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc