Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
This repository stores drug synergy prediction codebase for Augmented Cancer Drug Atlas (ACDA) and the analysis jupyter notebooks which use the ACDA code. We augmented the drug synergy prediction modeling approach CDA described in Narayan et al. by applying a Random Forest Regression and optimization via cross-validation hyperparameter tuning. For ease of sharing and use we implemented it as a python package. See documentation at https://acda.readthedocs.io.
The main prerequisite o install the Python package is python >3.8 environment. To install run:
pip install acda
The dependencies are installed automatically with the command above. See setup.py for the very basic dependency list.
Drug Synergy prediction is a complex problem typically approached with Machine Learning techniques by using molecular and pharmacological data. A recently published method Cancer Drug Atlas, CDA (Narayan et al. 2020), for drug synergy prediction in cell line models uses drug target information, knowledge of genes mutated in each model, and models' monotherapy drug sensitivity. The approach builds a logistic regression model to predict a binary synergy outcome. Here, we improved the CDA drug synergy prediction modeling approach by applying a CART-based model instead of a linear regression.
The datails of ACDA methods and benchmarking results are described in the preprint.
| Directory/File | Description |
|-----------------|----------------------------|
| acda/ | Python source code of the package |
| docs/ | Source code of the documentation |
| scripts/ | Scripts and additional functions which are used with the package |
| ChangeLog.md | File details changes implemented in new releases |
| LICENSE | The license agreement statement |
| [Other misc files] | ... |
The datailed examples and data requirements are in the documentation at documentation.
This package makes use of the data outlined below:
Narayan, R. S., Molenaar, P., Teng, J., Cornelissen, F. M. G., Roelofs, I., Menezes, R., Dik, R., et al. (2020). A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities, Nature Communications, 11/1: 2935. Nature Publishing Group.
Lianlian Wu, Yuqi Wen, Dongjin Leng, Qinglong Zhang, Chong Dai, Zhongming Wang, Ziqi Liu, Bowei Yan, Yixin Zhang, Jing Wang, Song He and Xiaochen Bo. Machine learning methods, databases and tools for drug combination prediction. Briefings in Bioinformatics, 23(1), 2022, 1-21.
Shuyu Zheng, Jehad Aldahdooh, Tolou Shadbahr, Yinyin Wang, Dalal Aldahdooh, Jie Bao, Wenyu Wang, Jing Tang. DrugComb update: a more comprehensive drug sensitivity data repository and analysis portal. Nucleic Acids Research, Volume 49, Issue W1, 2 July 2021, Pages W174-W184.
FAQs
Implementation of drug synergy prediction algorithms
We found that acda demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.