ackl
Publication
Analytical chemistry kernel library for spectroscopic profiling data, Food Chemistry Advances, Volume 3, 2023, 100342, ISSN 2772-753X, https://doi.org/10.1016/j.focha.2023.100342.
PyPI (Python Package Index) repository
https://pypi.org/project/ackl/
Reproducible Code-Ocean capsule
https://doi.org/10.24433/CO.4614220.v2
Install (Ubuntu Env Setup)
!apt-get install r-base r-base-dev ffmpeg libsm6 libxext6
!pip install rpy2
!pip install qsi==0.3.9
!pip install ackl==1.0.2
!pip install cla==1.1.4
!pip install opencv-python
# Post-install script
#!/usr/bin/env bash
set -e
Rscript -e 'install.packages("ECoL")'
Compile
python -m build --wheel
python -m pyc_wheel x.whl [optional]
Use
Kernel Response Patterns
import ackl.metrics
ackl.metrics.linear_response_pattern(20)
Run Kernels on Target Dataset
_, dics, _ = ackl.metrics.classify_with_kernels(X, y,embed_title = False)
Show the result as HTML table and bar charts:
html_str = ackl.metrics.visualize_metric_dicts(dics, plot = True)
display(HTML( html_str ))