
Security News
OpenClaw Skill Marketplace Emerges as Active Malware Vector
Security researchers report widespread abuse of OpenClaw skills to deliver info-stealing malware, exposing a new supply chain risk as agent ecosystems scale.
activetick-http
Advanced tools
Python module that connects to ActiveTick HTTP proxy and supplies Pandas DataFrames. Requires requests for the quoteStream, and redis for caching.
Currently unstable, may end up changing the methods from camelCase to pep8 snake_case.
tests run using pytest
Run the HTTP proxy supplied by ActiveTick_ and instantiate ActiveTick, the defaults are shown with a Redis cache enabled::
from activetick_http import ActiveTick
# Import the StrictRedis client to enable local persistent caching
from redis import StrictRedis
# ActiveTick initialized with Redis caching enabled (requires Redis)
at = ActiveTick(host='127.0.0.1', port=5000, cache=StrictRedis(host='127.0.0.1'))
From the ActiveTick instance we have access to all the functionality provided by the HTTP proxy with the following
methods:
.. _ActiveTick: http://www.activetick.com/activetick/contents/PersonalServicesDataAPIDownload.aspx
quoteData(symbols, fields)
Returns instantaneous quote information (fields) on symbols
check quote_fields.py for available options.::
fields = ['LastPrice', 'BidPrice', 'AskPrice']
df = at.quoteData(('SPY', 'TLT', 'TVIX'), fields)
print(df[fields].head())
+------+-------------+------------+------------+ | | LastPrice | BidPrice | AskPrice | +======+=============+============+============+ | SPY | 216.3 | 216.46 | 216.55 | +------+-------------+------------+------------+ | TLT | 137.51 | 137.02 | 137.5 | +------+-------------+------------+------------+ | TVIX | 18.15 | 18.2 | 18.25 | +------+-------------+------------+------------+
quoteStream(symbols)
Returns a live updated quote stream iterator::
stream = at.quoteStream(('NUGT','DUST'))
for tick in stream:
print(tick)
TODO: example df
barData(symbol, historyType='I', intradayMinutes=60, beginTime=datetime, endTime=datetime)
Returns OHLCV data for singular symbol::
df = at.barData('INTC', historyType='I', beginTime=datetime(datetime.now().year, 9, 27))
print(df.head())
+---------------------+--------+--------+-------+---------+-------------+ | | open | high | low | close | volume | +=====================+========+========+=======+=========+=============+ | 2016-09-28 09:00:00 | 37.52 | 37.52 | 37.25 | 37.395 | 1.79294e+06 | +---------------------+--------+--------+-------+---------+-------------+ | 2016-09-28 10:00:00 | 37.4 | 37.46 | 37.27 | 37.31 | 1.59818e+06 | +---------------------+--------+--------+-------+---------+-------------+ | 2016-09-28 11:00:00 | 37.31 | 37.32 | 37.15 | 37.28 | 1.32702e+06 | +---------------------+--------+--------+-------+---------+-------------+ | 2016-09-28 12:00:00 | 37.28 | 37.32 | 37.2 | 37.27 | 2.39398e+06 | +---------------------+--------+--------+-------+---------+-------------+ | 2016-09-28 13:00:00 | 37.275 | 37.39 | 37.22 | 37.37 | 1.23249e+06 | +---------------------+--------+--------+-------+---------+-------------+
tickData(symbol, trades=False, quotes=True, beginTime=datetime, endTime=dateime)
Returns historical tick level quote and trade data for a symbol::
df = at.tickData('GDX', trades=True, quotes=False)
print(df.head())
+----------------------------+--------+--------+---------+---------+---------+---------+---------+---------+ | | type | last | lastz | lastx | cond1 | cond2 | cond3 | cond4 | +============================+========+========+=========+=========+=========+=========+=========+=========+ | 2016-09-28 09:30:00.091000 | T | 26.27 | 52073 | P | 0 | 0 | 17 | 0 | +----------------------------+--------+--------+---------+---------+---------+---------+---------+---------+ | 2016-09-28 09:30:00.091000 | T | 26.27 | 52073 | P | 16 | 0 | 0 | 0 | +----------------------------+--------+--------+---------+---------+---------+---------+---------+---------+ | 2016-09-28 09:30:00.182000 | T | 26.25 | 211 | T | 0 | 12 | 0 | 0 | +----------------------------+--------+--------+---------+---------+---------+---------+---------+---------+ | 2016-09-28 09:30:00.184000 | T | 26.25 | 89 | T | 37 | 12 | 14 | 0 | +----------------------------+--------+--------+---------+---------+---------+---------+---------+---------+ | 2016-09-28 09:30:00.185000 | T | 26.25 | 500 | T | 0 | 12 | 14 | 0 | +----------------------------+--------+--------+---------+---------+---------+---------+---------+---------+
optionChain(symbol)
Returns the symbols making up the optionchain for the underlying::
df = at.optionChain('SPY')
print(df.head())
+----+------------------------------+ | | | +====+==============================+ | 0 | OPTION:SPY---161014P00186000 | +----+------------------------------+ | 1 | OPTION:SPY---161012C00197000 | +----+------------------------------+ | 2 | OPTION:SPY---161014C00187000 | +----+------------------------------+ | 3 | OPTION:SPY---161014P00192000 | +----+------------------------------+ | 4 | OPTION:SPY---161012P00193000 | +----+------------------------------+
FAQs
Pandas wrapper for ActiveTick HTTP Proxy
We found that activetick-http demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Security researchers report widespread abuse of OpenClaw skills to deliver info-stealing malware, exposing a new supply chain risk as agent ecosystems scale.

Security News
Claude Opus 4.6 has uncovered more than 500 open source vulnerabilities, raising new considerations for disclosure, triage, and patching at scale.

Research
/Security News
Malicious dYdX client packages were published to npm and PyPI after a maintainer compromise, enabling wallet credential theft and remote code execution.