
Research
/Security News
Critical Vulnerability in NestJS Devtools: Localhost RCE via Sandbox Escape
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
A Python SDK for seamless integration of MCP (Model Context Protocol) tools with multiple LLM providers including Anthropic Claude, OpenAI GPT, and Google Gemini.
Configure as many MCP servers/tools as you need at observee.ai
# Basic installation
pip install observee-agents
# With optional dependencies
pip install observee-agents[embedding,cloud]
# Development installation
pip install observee-agents[dev]
from observee_agents import chat_with_tools
result = chat_with_tools(
message="Search for recent news about AI developments",
provider="anthropic",
model="claude-sonnet-4-20250514",
observee_api_key="obs_your_key_here"
)
print("Response:", result["content"])
print("Tools used:", len(result["tool_calls"]))
from observee_agents import list_tools, get_tool_info, filter_tools
# List all available tools
tools = list_tools(observee_api_key="obs_your_key_here")
print(f"Found {len(tools)} tools:")
for tool in tools[:5]: # Show first 5
print(f"- {tool['name']}: {tool['description']}")
# Get detailed info about a specific tool
tool_info = get_tool_info(
tool_name="youtube_get_transcript",
observee_api_key="obs_your_key_here"
)
if tool_info:
print(f"Tool: {tool_info['name']}")
print(f"Description: {tool_info['description']}")
# Find relevant tools for a task
relevant_tools = filter_tools(
query="search YouTube videos",
max_tools=3,
observee_api_key="obs_your_key_here"
)
for tool in relevant_tools:
print(f"- {tool['name']} (relevance: {tool['relevance_score']})")
from observee_agents import execute_tool
# Execute a tool directly without LLM
result = execute_tool(
tool_name="youtube_get_transcript",
tool_input={"video_url": "https://youtube.com/watch?v=dQw4w9WgXcQ"},
observee_api_key="obs_your_key_here"
)
print(result)
You can extend the SDK with your own custom tools alongside the MCP tools:
from observee_agents import chat_with_tools_stream
import asyncio
# Define custom tool handler
async def custom_tool_handler(tool_name: str, tool_input: dict) -> str:
"""Handle custom tool executions"""
if tool_name == "add_numbers":
return str(tool_input.get("a", 0) + tool_input.get("b", 0))
elif tool_name == "multiply_numbers":
return str(tool_input.get("a", 0) * tool_input.get("b", 0))
elif tool_name == "get_time":
from datetime import datetime
return datetime.now().strftime("%I:%M %p")
else:
return f"Unknown tool: {tool_name}"
# Define custom tools in OpenAI format
custom_tools = [
{
"type": "function",
"function": {
"name": "add_numbers",
"description": "Add two numbers together",
"parameters": {
"type": "object",
"properties": {
"a": {"type": "number", "description": "First number"},
"b": {"type": "number", "description": "Second number"}
},
"required": ["a", "b"]
}
}
},
{
"type": "function",
"function": {
"name": "get_time",
"description": "Get the current time",
"parameters": {
"type": "object",
"properties": {}
}
}
}
]
# Use custom tools with MCP tools
async def custom_example():
async for chunk in chat_with_tools_stream(
message="What's 5 + 3? Also, what time is it?",
provider="openai",
custom_tools=custom_tools,
custom_tool_handler=custom_tool_handler,
observee_api_key="obs_your_key_here"
):
if chunk["type"] == "content":
print(chunk["content"], end="", flush=True)
elif chunk["type"] == "tool_result":
print(f"\n🔧 [Tool: {chunk['tool_name']} = {chunk['result']}]")
asyncio.run(custom_example())
Custom tools work seamlessly with all providers (Anthropic, OpenAI, Gemini) and can be combined with MCP tools for enhanced functionality.
import asyncio
from observee_agents import chat_with_tools_stream
async def stream_example():
async for chunk in chat_with_tools_stream(
message="What's the weather like today?",
provider="openai",
observee_api_key="obs_your_key_here"
):
if chunk["type"] == "content":
print(chunk["content"], end="", flush=True)
elif chunk["type"] == "tool_result":
print(f"\n[Tool executed: {chunk['tool_name']}]")
asyncio.run(stream_example())
import asyncio
from observee_agents import chat_with_tools_stream, get_conversation_history
async def conversation_example():
# Create a specialized assistant with conversation memory
session_id = "my_email_assistant"
custom_prompt = "You are a professional email assistant. Be concise and helpful."
# First message with custom system prompt
async for chunk in chat_with_tools_stream(
message="Search for emails about meetings",
provider="anthropic",
session_id=session_id, # 🆕 Enables conversation memory
system_prompt=custom_prompt, # 🆕 Custom AI behavior
observee_api_key="obs_your_key_here"
):
if chunk["type"] == "content":
print(chunk["content"], end="", flush=True)
print("\n" + "="*40 + "\n")
# Follow-up - remembers previous context!
async for chunk in chat_with_tools_stream(
message="What was the subject of the first meeting?",
session_id=session_id, # Same session = memory!
observee_api_key="obs_your_key_here"
):
if chunk["type"] == "content":
print(chunk["content"], end="", flush=True)
# Check conversation history
history = get_conversation_history(session_id)
print(f"\n📊 Conversation has {len(history)} messages")
asyncio.run(conversation_example())
import asyncio
from observee_agents import MCPAgent
async def advanced_example():
async with MCPAgent(
provider="anthropic",
server_url="wss://mcp.observee.ai/mcp?client_id=your_id",
auth_token="obs_your_key_here"
) as agent:
result = await agent.chat_with_tools(
message="What tools do you have access to?"
)
return result
result = asyncio.run(advanced_example())
print(result["content"])
The SDK includes built-in OAuth flows for authenticating with various services:
from observee_agents import call_mcpauth_login, get_available_servers
# Get list of supported authentication servers
servers = get_available_servers()
print(f"Available servers: {servers['supported_servers']}")
# Start authentication flow for Gmail
response = call_mcpauth_login(auth_server="gmail")
print(f"Visit this URL to authenticate: {response['url']}")
# Start authentication flow for Slack with client ID
response = call_mcpauth_login(
auth_server="slack"
)
Supported Services: Gmail, Google Calendar, Google Docs, Google Drive, Google Sheets, Slack, Notion, Linear, Asana, Outlook, OneDrive, Atlassian, Supabase, Airtable, Discord, and more.
# Option 1: API Key (Recommended)
export OBSERVEE_API_KEY="obs_your_key_here"
export OBSERVEE_CLIENT_ID="your_client_id" # Optional
# Option 2: Direct URL
export OBSERVEE_URL="https://mcp.observee.ai/mcp"
# LLM Provider Keys
export ANTHROPIC_API_KEY="your_anthropic_key"
export OPENAI_API_KEY="your_openai_key"
export GOOGLE_API_KEY="your_google_key"
from observee_agents import chat_with_tools
result = chat_with_tools(
message="Your query here",
# Provider Configuration
provider="anthropic", # "anthropic", "openai", "gemini"
model="claude-sonnet-4-20250514", # Auto-detected if not provided
# Authentication (priority: params > env vars)
observee_api_key="obs_your_key",
observee_url="https://custom.mcp.server/endpoint",
client_id="your_client_id",
# Tool Filtering
enable_filtering=True, # True for filtered tools, False for all tools
filter_type="bm25", # "bm25", "local_embedding", "cloud"
max_tools=20, # Maximum tools to filter
min_score=8.0, # Minimum relevance score
# Performance
sync_tools=False, # True to clear caches and resync
# 🆕 Conversation features
session_id="my_assistant", # Enable conversation memory
system_prompt="You are a helpful expert...", # Custom AI behavior
# Provider-specific args
temperature=0.7,
max_tokens=1000
)
# Main chat functionality
from observee_agents import chat_with_tools, chat_with_tools_stream
# Tool exploration and management
from observee_agents import list_tools, get_tool_info, filter_tools, execute_tool
# 🆕 Conversation management
from observee_agents import (
get_conversation_history,
reset_conversation_history,
list_sessions,
clear_session
)
# Advanced usage
from observee_agents import MCPAgent
from observee_agents import chat_with_tools
# Anthropic Claude
result = chat_with_tools(
message="Analyze this YouTube video",
provider="anthropic",
model="claude-sonnet-4-20250514"
)
# OpenAI GPT
result = chat_with_tools(
message="Search for recent AI papers",
provider="openai",
model="gpt-4o"
)
# Google Gemini
result = chat_with_tools(
message="Help me manage my emails",
provider="gemini",
model="gemini-2.5-pro"
)
from observee_agents import chat_with_tools_stream
# Email management specialist
async for chunk in chat_with_tools_stream(
message="Help me organize my inbox",
session_id="email_bot",
system_prompt="You are an email productivity expert. Focus on organization and efficiency.",
provider="anthropic"
):
# Handle streaming response...
# Data analysis specialist
async for chunk in chat_with_tools_stream(
message="Analyze the latest sales data",
session_id="data_bot",
system_prompt="You are a data scientist. Provide technical insights and actionable recommendations.",
provider="openai"
):
# Handle streaming response...
# Content creation specialist
async for chunk in chat_with_tools_stream(
message="Create a YouTube video summary",
session_id="content_bot",
system_prompt="You are a content strategist. Focus on engagement and storytelling.",
provider="gemini"
):
# Handle streaming response...
from observee_agents import chat_with_tools
# Fast BM25 keyword filtering (default)
result = chat_with_tools(
message="Find relevant tools",
filter_type="bm25",
max_tools=5
)
# Semantic embedding filtering
result = chat_with_tools(
message="Find relevant tools",
filter_type="local_embedding",
max_tools=10
)
# Cloud hybrid search (requires API keys)
result = chat_with_tools(
message="Find relevant tools",
filter_type="cloud",
max_tools=15
)
# No filtering - use all available tools
result = chat_with_tools(
message="What can you do?",
enable_filtering=False
)
from observee_agents import chat_with_tools
# Custom Observee server
result = chat_with_tools(
message="Custom server query",
observee_url="https://your-custom-server.com/mcp",
client_id="custom_client_123"
)
# Force cache refresh
result = chat_with_tools(
message="Get fresh results",
sync_tools=True # Clears caches
)
{
"content": "The AI response text",
"tool_calls": [
{
"name": "tool_name",
"input": {"param": "value"}
}
],
"tool_results": [
{
"tool": "tool_name",
"result": "tool output"
}
],
"filtered_tools_count": 5,
"filtered_tools": ["tool1", "tool2", "tool3"],
"used_filtering": True
}
The SDK provides access to various MCP tools including:
fastembed
pinecone-client
, openai
PINECONE_API_KEY
, OPENAI_API_KEY
# Clone and install in development mode
git clone https://github.com/observee-ai/mcp-agent-system.git #coming soon
cd mcp-agent-system
pip install -e .[dev]
# Run tests
pytest
# Format code
black observee_agents/
All rights reserved. This software is proprietary and confidential. Unauthorized copying, distribution, or use is strictly prohibited.
FAQs
A Python SDK for MCP tool integration with LLM providers
We found that agent-oauth demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
/Security News
A flawed sandbox in @nestjs/devtools-integration lets attackers run code on your machine via CSRF, leading to full Remote Code Execution (RCE).
Product
Customize license detection with Socket’s new license overlays: gain control, reduce noise, and handle edge cases with precision.
Product
Socket now supports Rust and Cargo, offering package search for all users and experimental SBOM generation for enterprise projects.