You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

ailogx

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ailogx

LLM-optimized structured logging and summarization for large-scale debugging.

1.1.0
pipPyPI
Maintainers
1

🧠 LLM Logger

LLM Logger is a Python logging framework designed for seamless integration with Large Language Models (LLMs).
It produces structured, LLM-friendly logs that can be easily summarized or reasoned about — even across massive, deeply nested codebases.

🚀 Features

  • 🪵 Structured JSON logs (timestamped, contextual, machine-readable)
  • 🧠 LLM-optimized format with reason, inputs, outputs, and semantic tags
  • 📂 Log grouping (start_group, end_group) and function spans
  • 🔌 Modular LLM backend support via environment variable:
    • Ollama (local models)
    • Groq (LLama, Gemma via API)
    • OpenAI (GPT-3.5 / GPT-4)
  • 📊 Summarization CLI with smart filtering and token-aware chunking
  • 💾 Cache for LLM calls with expiration/cleanup
  • 🧪 Test harness to simulate deeply nested logs

📦 Installation

pip install ailogx

🛠️ Basic Usage

from ailogx.core import LLMLogger

log = LLMLogger("my-service")

log.llm_info("User login started", inputs={"username": "admin"})
log.llm_decision("Using 2FA", reason="high-risk user")
log.llm_error("Login failed", reason="Invalid OTP")

🔁 Function Span

with log.function_span("process_payment", reason="checkout flow"):
    # your logic
    pass

📂 Grouping Logs

log.start_group("req-42", reason="incoming API request")
# your logs here
log.end_group("req-42")

📊 LLM Summarization

🧠 Environment-based Backend Selection

Supports:

  • LLM_LOGGER_BACKEND=ollama (default)
  • LLM_LOGGER_BACKEND=groq
  • LLM_LOGGER_BACKEND=openai

🧾 Example

export LLM_LOGGER_BACKEND=groq  # or 'openai', 'ollama'
export GROQ_API_KEY="your-groq-api-key"
- You must have a Groq account.
- Supported models: gemma3, llama3-70b, etc.

export OPENAI_API_KEY="your-openai-api-key"
- You must have an OpenAI API key.Models like gpt-3.5-turbo, gpt-4, etc. are supported.

For selecting Models : 
| Backend  | Env Var to Set | Example Value         |
|----------|----------------|-----------------------|
| groq     | GROQ_MODEL     | llama-3-70b-8192      |
| openai   | OPENAI_MODEL   | gpt-4o                |
| ollama   | OLLAMA_MODEL   | llama3                |

python -m ailogx.summarize simulated_logs/deep_nested_logs.jsonl --filter=smart --fast

For using with relevant intent:
python -m ailogx.summarize huge_app_logs.jsonl --filter=smart --fast --intent "focus on authentication and signup failures"

Or call from Python:

from ailogx.summarizer.summarizer import multi_pass_summarize
from ailogx.backends.registry import get_analyzer
import json

with open("llm_logs.jsonl") as f:
    logs = [json.loads(line) for line in f]

summary = multi_pass_summarize(logs, get_analyzer())
print(summary)

🧪 Test Harness

Generate deep, nested logs for benchmarking:

python ailogx/core.py

Outputs:

  • llm_simulated_logs.jsonl (LLMLogger)
  • standard_simulated_logs.log (Python logging)

🔁 Cache & Optimization

  • ✅ LLM responses cached to .cache/
  • 🧠 Token-aware chunking
  • 🔎 Smart filtering (--filter=smart, --intent="auth errors")
  • --fast mode for shallow summaries before full deep dives

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts