Aiomql - Bot Building Framework and Asynchronous MetaTrader5 Library

Installation
pip install aiomql
Key Features
- Asynchronous Python Library For MetaTrader5
- Asynchronous Bot Building Framework
- Build bots for trading in different financial markets.
- Use threadpool executors to run multiple strategies on multiple instruments concurrently
- Records and keep track of trades and strategies in csv files.
- Helper classes for Bot Building. Easy to use and extend.
- Compatible with pandas-ta.
- Sample Pre-Built strategies
- Specify and Manage Trading Sessions
- Risk Management
- Backtesting Engine
- Run multiple bots concurrently with different accounts from the same broker or different brokers
- Easy to use and very accurate backtesting engine
As an asynchronous MetaTrader5 Libray
import asyncio
from aiomql import MetaTrader
async def main():
mt5 = MetaTrader()
res = await mt5.initialize(login=31288540, password='nwa0#anaEze', server='Deriv-Demo')
if not res:
print('Unable to login and initialize')
return
acc = await mt5.account_info()
print(acc)
symbols = await mt5.symbols_get()
print(symbols)
asyncio.run(main())
As a Bot Building FrameWork using a Sample Strategy
Aiomql allows you to focus on building trading strategies and not worry about the underlying infrastructure.
It provides a simple and easy to use framework for building bots with rich features and functionalities.
from datetime import time
import logging
from aiomql import Bot, ForexSymbol, FingerTrap, Session, Sessions, RAM, SimpleTrader, TimeFrame, Chaos
logging.basicConfig(level=logging.INFO)
def build_bot():
bot = Bot()
params = {'fast_period': 8, 'slow_period': 34, 'etf': TimeFrame.M5}
symbols = ['GBPUSD', 'AUDUSD', 'USDCAD', 'EURGBP', 'EURUSD']
symbols = [ForexSymbol(name=sym) for sym in symbols]
strategies = [FingerTrap(symbol=sym, params=params)for sym in symbols]
bot.add_strategies(strategies)
london = Session(name='London', start=time(8, 0), end=time(16, 0))
new_york = Session(name='New York', start=time(13, 0), end=time(21, 0))
tokyo = Session(name='Tokyo', start=time(0, 0), end=time(8, 0))
sessions = Sessions(sessions=[london, new_york, tokyo])
jpy_strategy = Chaos(symbol=ForexSymbol(name='USDJPY'), sessions=sessions)
bot.add_strategy(strategy=jpy_strategy)
bot.execute()
build_bot()
Backtesting
Aiomql provides a very accurate backtesting engine that allows you to test your trading strategies before deploying
them in the market. The backtest engine prioritizes accuracy over speed, but allows you to increase the speed
as desired. It is very easy to use and provides a lot of flexibility. The backtester is designed to run strategies
seamlessly without need for modification of the strategy code. When running in backtest mode all the classes that
needs to know if they are running in backtest mode will be able to do so and adjust their behavior accordingly.
from aiomql import MetaBackTester, BackTestEngine, MetaTrader
import logging
from datetime import datetime, UTC
from aiomql.lib.backtester import BackTester
from aiomql.core import Config
from aiomql.contrib.strategies import FingerTrap
from aiomql.contrib.symbols import ForexSymbol
from aiomql.core.backtesting import BackTestEngine
def back_tester():
config = Config(mode="backtest")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
syms = ["Volatility 75 Index", "Volatility 100 Index", "Volatility 25 Index", "Volatility 10 Index"]
symbols = [ForexSymbol(name=sym) for sym in syms]
strategies = [FingerTrap(symbol=symbol) for symbol in symbols]
start = datetime(2024, 5, 1, tzinfo=UTC)
stop_time = datetime(2024, 5, 2, tzinfo=UTC)
end = datetime(2024, 5, 7, tzinfo=UTC)
back_test_engine = BackTestEngine(start=start, end=end, speed=3600, stop_time=stop_time,
close_open_positions_on_exit=True, assign_to_config=True, preload=True,
account_info={"balance": 350})
backtester = BackTester(backtest_engine=back_test_engine)
backtester.add_strategies(strategies=strategies)
backtester.execute()
back_tester()
Writing a Custom Strategy
Aiomql provides a simple and easy to use framework for building trading strategies. You can easily extend the
framework to build your own custom strategies. Below is an example of a simple strategy that buys when the fast
moving average crosses above the slow moving average and sells when the fast moving average crosses below the slow
moving average.
from aiomql import Strategy, ForexSymbol, TimeFrame, Tracker, OrderType, Sessions, Trader, ScalpTrader
class EMAXOver(Strategy):
ttf: TimeFrame
tcc: int
fast_ema: int
slow_ema: int
tracker: Tracker
interval: TimeFrame
timeout: int
parameters = {'ttf': TimeFrame.H1, 'tcc': 3000, 'fast_ema': 34, 'slow_ema': 55, 'interval': TimeFrame.M15,
'timeout': 3 * 60 * 60}
def __init__(self, *, symbol: ForexSymbol, params: dict | None = None, trader: Trader = None,
sessions: Sessions = None, name: str = "EMAXOver"):
super().__init__(symbol=symbol, params=params, sessions=sessions, name=name)
self.tracker = Tracker(snooze=self.interval.seconds)
self.trader = trader or ScalpTrader(symbol=self.symbol)
async def find_entry(self):
candles = await self.symbol.copy_rates_from_pos(timeframe=self.ttf, start_position=0, count=self.tcc)
candles.ta.ema(length=self.fast_ema, append=True)
candles.ta.ema(length=self.slow_ema, append=True)
candles.rename(**{f"EMA_{self.fast_ema}": "fast_ema", f"EMA_{self.slow_ema}": "slow_ema"}, inplace=True)
fas = candles.ta_lib.cross(candles.fast_ema, candles.slow_ema, above=True)
fbs = candles.ta_lib.cross(candles.fast_ema, candles.slow_ema, above=False)
if fas.iloc[-1]:
self.tracker.update(order_type=OrderType.BUY, snooze=self.timeout)
elif fbs.iloc[-1]:
self.tracker.update(order_type=OrderType.SELL, snooze=self.timeout)
else:
self.tracker.update(order_type=None, snooze=self.interval.seconds)
async def trade(self):
await self.find_entry()
if self.tracker.order_type is None:
await self.sleep(secs=self.tracker.snooze)
else:
await self.trader.place_trade(order_type=self.tracker.order_type, parameters=self.parameters)
await self.delay(secs=self.tracker.snooze)
Testing
Run the tests with pytest
pytest tests
API Documentation
see API Documentation for more details
Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Changelog
See CHANGELOG for more details
Support
Feeling generous, like the package or want to see it become a more mature package?
Consider supporting the project by buying me a coffee.
