Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

aithree

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

aithree

Enables Algorithmic Selection and Customization in Deep Neural Networks

  • 0.1.0
  • PyPI
  • Socket score

Maintainers
1

.. _repo: https://github.com/KLab-ai3/ai3 .. |repo| replace:: Source Code .. _custom: https://github.com/KLab-ai3/ai3/tree/main/src/ai3/custom .. |custom| replace:: custom .. _custom_cmake: https://github.com/KLab-ai3/ai3/tree/main/src/ai3/cmake/custom.cmake .. |custom_cmake| replace:: custom.cmake .. _doc: https://klab-ai3.github.io/ai3 .. |doc| replace:: Documentation .. _model_zoo: https://github.com/KLab-ai3/ai3/tree/main/model_zoo/models.py .. |model_zoo| replace:: model_zoo .. |name| replace:: ai3 .. |pkg_name| replace:: aithree

|name|

The |name| (Algorithmic Innovations for Accelerated Implementations of Artificial Intelligence) framework provides easy-to-use fine-grain algorithmic control over an existing DNN. |name| contains built-in high performance implementations of common deep learning operations and methods by which users can implement their own algorithms in C++. |name| incurs no additional performance overhead, meaning that performance depends solely on the algorithms chosen by the user.

|doc|_ |repo|_

Installation

Default Implementations: pip install |pkg_name|

Custom Implementations:

  1. Download the source code
  2. Create an implementation with the operations defined in |custom|_
  3. If needed, configure the build process with |custom_cmake|_
  4. pip install <path to source code>

The framework currently features two methods for algorithmic swapping. swap_backend which swaps every module type of a DNN returning an object completely managed by |name| and swap_conv2d which swaps convolution operations out of the existing DNN.

swap_conv2d

Swaps, in-place, *conv2d* operations out of the existing *DNN* for an implementation of
the user specified algorithm. After swapping, the same *DNN* can still be trained
and compiled. If no `AlgorithmicSelector` is given then the default
algorithm decided by the framework are used.

Example:
    Swaps the first *conv2d* operation for an implementation of direct convolution
    and the second *conv2d* operation for an implementation of *SMM* convolution

    >>> input_data = torch.randn(10, 3, 224, 224)
    >>> orig = ConvNet()
    >>> orig_out = orig(input_data)
    >>> ai3.swap_conv2d(orig, ['direct', 'smm'])
    >>> sc_out = orig(input_data)
    >>> torch.allclose(orig_out, sc_out, atol=1e-6)
    True

*swap_backend*

Swaps every module in an exsiting DNN for an implementation of the user specified algorithm returning a Model completly managed by the framework.

Algorithmic selection is performed by passing a mapping from strings containing names of the operations to swap to a AlgorithmicSelector. If no AlgorithmicSelector is passed for a given operation then the default algorithm decided by the framework are used.

Example: Swaps the first conv2d operation for an implementation of direct convolution and the second conv2d operation for an implementation of SMM convolution

>>> def auto_selector(orig: torch.nn.Conv2d, input_shape) -> str:
...     out_channels = orig.weight.shape[0]
...     if (out_channels < 50 and
...         input_shape[1] < 50 and
...         input_shape[2] > 150 and
...         input_shape[3] > 150):
...         return 'direct'
...     return 'smm'
...
>>> input_data = torch.randn(1, 3, 224, 224)
>>> vgg16 = torchvision.models.vgg16(weights=torchvision.models.VGG16_Weights.DEFAULT)
>>> vgg16 = vgg16.eval()
>>> with torch.inference_mode():
...     torch_out = vgg16(input_data)
...     model: ai3.Model = ai3.swap_backend(vgg16, {"conv2d": auto_selector,
...                                                 "maxpool2d": "default"},
...                                         sample_input_shape=(1, 3, 224, 224))
...     sb_out = model(input_data)
...     torch.allclose(torch_out, sb_out, atol=1e-4)
True

Supported Operations, their Algorithms, and Acceleration Platform Compatibility

.. |y| unicode:: U+2713 .. |n| unicode:: U+2717

2D Convolution


The *guess* algorithm uses the algorithm returned by `cudnnGetConvolutionForwardAlgorithm_v7`.

.. list-table::
   :widths: auto
   :header-rows: 0
   :stub-columns: 1
   :align: left

   * - Algorithm
     - direct
     - *smm*
     - *gemm*
     - *implicit precomp gemm*
     - *implicit gemm*
     - *winograd*
     - *guess*
     - some
   * - *none*
     - |y|
     - |y|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |y|
   * - *sycl*
     - |y|
     - |y|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |y|
   * - *cudnn*
     - |n|
     - |n|
     - |y|
     - |y|
     - |y|
     - |y|
     - |y|
     - |y|
   * - *cublas*
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
   * - *mps*
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |y|
   * - *metal*
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |n|
     - |y|

Linear
~~~~~~
.. list-table::
   :widths: auto
   :header-rows: 0
   :stub-columns: 1
   :align: left

   * - Algorithm
     - *gemm*
   * - *none*
     - |y|
   * - *sycl*
     - |n|
   * - *cudnn*
     - |n|
   * - *cublas*
     - |y|
   * - *mps*
     - |n|
   * - *metal*
     - |n|


*2D* MaxPool
~~~~~~~~~~~~
.. list-table::
   :widths: auto
   :header-rows: 0
   :stub-columns: 1
   :align: left

   * - Algorithm
     - direct
   * - *none*
     - |y|
   * - *sycl*
     - |n|
   * - *cudnn*
     - |n|
   * - *cublas*
     - |n|
   * - *mps*
     - |n|
   * - *metal*
     - |n|

*2D* AvgPool
~~~~~~~~~~~~
.. list-table::
   :widths: auto
   :header-rows: 0
   :stub-columns: 1
   :align: left

   * - Algorithm
     - direct
   * - *none*
     - |y|
   * - *sycl*
     - |n|
   * - *cudnn*
     - |n|
   * - *cublas*
     - |n|
   * - *mps*
     - |n|
   * - *metal*
     - |n|

*2D* AdaptiveAvgPool

.. list-table:: :widths: auto :header-rows: 0 :stub-columns: 1 :align: left

    • Algorithm
    • direct
    • none
    • |y|
    • sycl
    • |n|
    • cudnn
    • |n|
    • cublas
    • |n|
    • mps
    • |n|
    • metal
    • |n|

ReLU

.. list-table::
   :widths: auto
   :header-rows: 0
   :stub-columns: 1
   :align: left

   * - Algorithm
     - direct
   * - *none*
     - |y|
   * - *sycl*
     - |n|
   * - *cudnn*
     - |n|
   * - *cublas*
     - |n|
   * - *mps*
     - |n|
   * - *metal*
     - |n|


Flatten

.. list-table:: :widths: auto :header-rows: 0 :stub-columns: 1 :align: left

    • Algorithm
    • direct
    • none
    • |y|
    • sycl
    • |n|
    • cudnn
    • |n|
    • cublas
    • |n|
    • mps
    • |n|
    • metal
    • |n|

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc