Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

amplpy

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

amplpy

Python API for AMPL

  • 0.14.0
  • PyPI
  • Socket score

Maintainers
1

AMPLPY: Python API for AMPL

# Install Python API for AMPL
$ python -m pip install amplpy --upgrade

# Install solver modules (e.g., HiGHS, CBC, Gurobi)
$ python -m amplpy.modules install highs cbc gurobi

# Activate your license (e.g., free https://ampl.com/ce license)
$ python -m amplpy.modules activate <license-uuid>

# Import in Python
$ python
>>> from amplpy import AMPL
>>> ampl = AMPL() # instantiate AMPL object
# Minimal example:
from amplpy import AMPL
import pandas as pd
ampl = AMPL()
ampl.eval(r"""
    set A ordered;
    param S{A, A};
    param lb default 0;
    param ub default 1;
    var w{A} >= lb <= ub;
    minimize portfolio_variance:
        sum {i in A, j in A} w[i] * S[i, j] * w[j];
    s.t. portfolio_weights:
        sum {i in A} w[i] = 1;
""")
tickers, cov_matrix = # ... pre-process data in Python
ampl.set["A"] = tickers
ampl.param["S"] = pd.DataFrame(cov_matrix, index=tickers, columns=tickers)
ampl.solve(solver="gurobi", gurobi_options="outlev=1")
assert ampl.solve_result == "solved"
sigma = ampl.get_value("sqrt(sum {i in A, j in A} w[i] * S[i, j] * w[j])")
print(f"Volatility: {sigma*100:.1f}%")
# ... post-process solution in Python

[Documentation] [AMPL Modules for Python] [Available on Google Colab] [AMPL Community Edition]

amplpy is an interface that allows developers to access the features of AMPL from within Python. For a quick introduction to AMPL see Quick Introduction to AMPL.

In the same way that AMPL’s syntax matches naturally the mathematical description of the model, the input and output data matches naturally Python lists, sets, dictionaries, pandas and numpy objects.

All model generation and solver interaction is handled directly by AMPL, which leads to great stability and speed; the library just acts as an intermediary, and the added overhead (in terms of memory and CPU usage) depends mostly on how much data is sent and read back from AMPL, the size of the expanded model as such is irrelevant.

With amplpy you can model and solve large scale optimization problems in Python with the performance of heavily optimized C code without losing model readability. The same model can be deployed on applications built on different languages by just switching the API used.

Documentation

Repositories:

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc