Socket
Book a DemoInstallSign in
Socket

antarys

Package Overview
Dependencies
Maintainers
1
Versions
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

antarys

High-performance Python client for Antarys vector database

pipPyPI
Version
0.2.0
Maintainers
1

Antarys Vector Database Python Client

Python client for Antarys vector database, optimized for large-scale vector operations with built-in caching, parallel processing, and dimension validation.

Installation

Install via pip package

pip install antarys

Optional dependencies for accelerated performance:

pip install numba lz4

Quick Start

import asyncio
from antarys import Client


async def main():
    # Initialize client with performance optimizations
    client = Client(
        host="http://localhost:8080",
        connection_pool_size=100,  # Auto-sized based on CPU count
        use_http2=True,
        cache_size=1000,
        thread_pool_size=16
    )

    # Create collection
    await client.create_collection(
        name="my_vectors",
        dimensions=1536,
        enable_hnsw=True,
        shards=16
    )

    vectors = client.vector_operations("my_vectors")

    # Upsert vectors
    await vectors.upsert([
        {"id": "1", "values": [0.1] * 1536, "metadata": {"category": "A"}},
        {"id": "2", "values": [0.2] * 1536, "metadata": {"category": "B"}}
    ])

    # Query similar vectors
    results = await vectors.query(
        vector=[0.1] * 1536,
        top_k=10,
        include_metadata=True
    )

    await client.close()


asyncio.run(main())

Core Concepts

Collections

# Create collection with optimized parameters
await client.create_collection(
    name="vectors",
    dimensions=1536,  # Required: vector dimensions
    enable_hnsw=True,  # Enable HNSW indexing for fast ANN
    shards=16,  # Parallel processing shards
    m=16,  # HNSW connectivity parameter
    ef_construction=200  # HNSW construction quality
)

# List collections
collections = await client.list_collections()

# Get collection info
info = await client.describe_collection("vectors")

# Delete collection
await client.delete_collection("vectors")

Generating Embedding

import antarys

# Create client
client = await antarys.create_client("http://localhost:8080")

# Simple embedding
embedding = await antarys.embed(client, "Hello, World!")

# Multiple texts
embeddings = await antarys.embed(client, [
    "First document",
    "Second document"
])

# Query embedding (with "query: " prefix)
query_emb = await antarys.embed_query(client, "What is AI?")

# Document embeddings (with "passage: " prefix)
doc_embs = await antarys.embed_documents(
    client,
    documents=["Python is great", "JavaScript too"],
    show_progress=True
)

# Text similarity
score = await antarys.text_similarity(
    client,
    "machine learning",
    "artificial intelligence"
)

# Or use the operations interface directly
embed_ops = client.embedding_operations()
embeddings = await embed_ops.embed(["Text 1", "Text 2"])

Vector Operations

Single Vector Upsert

vectors = client.vector_operations("my_collection")

data = [
    {
        "id": "1",
        "values": [0.1, 0.2, 0.3],  # Must match collection dimensions
        "metadata": {"category": "example", "timestamp": 1234567890}
    },
    {
        "id": "2",
        "values": [0.4, 0.5, 0.6],  # Must match collection dimensions
        "metadata": {"category": "example", "timestamp": 1234567891}
    }
]

# Upsert single vector
await vectors.upsert(data)

Batch Upsert For Large Scale Data

# Upload multiple vectors in batches for large scale
batch = []
for i in range(1000):
    vector_record = {
        "id": f"vector_{i}",
        "vector": [random.random() for _ in range(1536)],  # Use "vector" key
        "metadata": {
            "category": f"category_{i % 5}",
            "timestamp": int(time.time()),
            "batch_id": 1
        }
    }
    batch.append(vector_record)

result = await vectors.upsert_batch(batch)

Vector Query

# Single vector similarity search
results = await vectors.query(
    vector=[0.1] * 1536,
    top_k=10,
    include_values=False,  # Exclude vector values for faster response
    include_metadata=True,  # Include metadata in results
    filter={"category": "A"},  # Metadata filtering
    use_ann=True,  # Use approximate nearest neighbors (HNSW)
    threshold=0.7  # Minimum similarity filter (0.0 for all results)
)

for match in results["matches"]:
    print(f"ID: {match['id']}, Score: {match['score']}")

Batch Query

# Multiple vector queries in parallel
query_vectors = [[0.1] * 1536, [0.2] * 1536, [0.3] * 1536]

batch_results = await vectors.batch_query(
    vectors=query_vectors,
    top_k=5,
    include_metadata=True,
    validate_dimensions=True
)

for i, result in enumerate(batch_results["results"]):
    print(f"Query {i}: {len(result['matches'])} matches")

Delete Vectors

# Delete vectors by ID
await vectors.delete(["vector_1", "vector_2", "vector_3"])

# Get vector by ID
vector_data = await vectors.get_vector("vector_1")

# Count vectors in collection
count = await vectors.count_vectors()

Performance Optimization

Client Configuration

client = Client(
    host="http://localhost:8080",

    # Connection Pool Optimization
    connection_pool_size=100,  # High concurrency (auto: CPU_COUNT * 5)
    timeout=120,  # Extended timeout for large operations

    # HTTP/2 and Compression
    use_http2=True,  # Enable HTTP/2 multiplexing
    compression=True,  # Enable response compression

    # Caching Configuration
    cache_size=1000,  # Client-side query cache
    cache_ttl=300,  # Cache TTL in seconds

    # Threading and Parallelism
    thread_pool_size=16,  # CPU-bound operations (auto: CPU_COUNT * 2)

    # Retry Configuration
    retry_attempts=5,  # Network resilience

    # Debug Mode
    debug=True  # Performance monitoring
)

Batch Operation Tuning

# Optimal batch upsert parameters
await vectors.upsert(
    vectors=large_dataset,
    batch_size=5000,  # Optimal for network efficiency
    parallel_workers=8,  # Match server capability
    validate_dimensions=True,  # Prevent dimension errors
    show_progress=True
)

# High-throughput query configuration
results = await vectors.query(
    vector=query_vector,
    top_k=100,
    include_values=False,  # Reduce response size
    include_metadata=True,
    use_ann=True,  # Fast approximate search
    ef_search=200,  # Higher quality (vs speed)
    skip_cache=False  # Leverage cache
)

Server-Side Optimization

HNSW Index Parameters

await client.create_collection(
    name="high_performance",
    dimensions=1536,
    enable_hnsw=True,

    # HNSW Tuning
    m=16,  # Connectivity (16-64 for high recall)
    ef_construction=200,  # Graph construction quality (200-800)
    shards=32,  # Parallel processing (match CPU cores)
)

# Query-time HNSW parameters
results = await vectors.query(
    vector=query_vector,
    ef_search=200,  # Search quality (100-800) | Higher means accuracy over speed and ram consumption 
    use_ann=True  # Enable HNSW acceleration
)

Memory and Resource Management

# Force commit for persistence
await client.commit()

# Clear client-side caches
await client.clear_cache()
await vectors.clear_cache()

# Proper resource cleanup
await client.close()

Advanced Features

Dimension Validation

# Automatic dimension validation
is_valid = await vectors.validate_vector_dimensions([0.1] * 1536)

# Get collection dimensions
dims = await vectors.get_collection_dimensions()

Cache Performance Monitoring

# Get cache statistics
stats = vectors.get_cache_stats()
print(f"Cache hit rate: {stats['hit_rate']:.2%}")
print(f"Cache size: {stats['cache_size']}")

Performance Benchmarks

Small Scale (< 1M vectors)

client = Client(
    connection_pool_size=20,
    cache_size=500,
    thread_pool_size=4
)

batch_size = 1000
parallel_workers = 2

Medium Scale (1M - 10M vectors)

client = Client(
    connection_pool_size=50,
    cache_size=2000,
    thread_pool_size=8
)

batch_size = 3000
parallel_workers = 4

Large Scale (10M+ vectors)

client = Client(
    connection_pool_size=100,
    cache_size=5000,
    thread_pool_size=16
)

batch_size = 5000
parallel_workers = 8

Data Types

The client uses strongly typed interfaces:

from antarys.types import VectorRecord, SearchResult, SearchParams

# Type-safe vector record
record: VectorRecord = {
    "id": "example",
    "values": [0.1, 0.2, 0.3],
    "metadata": {"key": "value"}
}

# Search parameters
params = SearchParams(
    vector=[0.1] * 1536,
    top_k=10,
    include_metadata=True,
    threshold=0.8
)

Health Monitoring

# Check server health
health = await client.health()

# Get server information
info = await client.info()

# Collection statistics
collection_info = await client.describe_collection("vectors")
print(f"Vector count: {collection_info.get('vector_count', 0)}")

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts