Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

antidupe

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

antidupe

Image deduplicator using CNN, Cosine Similarity, Image Hashing, Structural Similarity Index Measurement, and Euclidean Distance

  • 0.0.8
  • PyPI
  • Socket score

Maintainers
1

Antidupe

Image deduplicator using CNN, Cosine Similarity, Image Hashing, Structural Similarity Index Measurement, and Euclidean Distance

Installation

You can install Antidupe using pip:

pip install antidupe

Usage

Basic Usage

from antidupe import Antidupe
from PIL import Image

# Initialize Antidupe
antidupe = Antidupe()

# Load images (as numpy arrays or PIL.Image objects)
image1 = Image.open("image1.jpg")
image2 = Image.open("image2.jpg")

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

if is_duplicate:
    print("Duplicate images detected!")
else:
    print("Images are not duplicates.")

Customizing Thresholds

You can customize the similarity thresholds for each technique during runtime or initialization:

  • Note that negative values will disable the measurement layer.
# Initialize Antidupe with custom thresholds
custom_thresholds = {
    'ih': 0.2,    # Image Hash
    'ssim': 0.2,  # SSIM
    'cs': 0.2,    # Cosine Similarity
    'cnn': 0.2,   # CNN
    'dedup': 0.1 # Mobilenet
}
antidupe = Antidupe(limits=custom_thresholds)

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

Debugging

You can enable debug mode to print debugging messages:

# Initialize Antidupe with debug mode enabled
antidupe = Antidupe(debug=True)

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

Changing Limits During Runtime

You can change the similarity thresholds during runtime:

# Set new limits during runtime
new_thresholds = {
    'ih': 0.1,
    'ssim': 0.1,
    'cs': 0.1,
    'cnn': 0.1,
    'dedup': 0.15
}
antidupe.set_limits(limits=new_thresholds)

# Check for duplicates
is_duplicate = antidupe.predict([image1, image2])

Requirements

  • Python 3.x
  • SSIM PIL
  • ImageDeDup
  • NumPy
  • MatPlotLib
  • Pillow
  • ImageHash
  • Torch
  • Efficientnet Pytorch
  • TorchVision

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc