
Security News
New CVE Forecasting Tool Predicts 47,000 Disclosures in 2025
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.
Python library for Apache Atlas.
Use the package manager pip to install Python client for Apache Atlas.
> pip install apache-atlas
Verify if apache-atlas client is installed:
> pip list
Package Version
------------ ---------
apache-atlas 0.0.16
python atlas_example.py
# atlas_example.py
import time
from apache_atlas.client.base_client import AtlasClient
from apache_atlas.model.instance import AtlasEntity, AtlasEntityWithExtInfo, AtlasEntitiesWithExtInfo, AtlasRelatedObjectId
from apache_atlas.model.enums import EntityOperation
## Step 1: create a client to connect to Apache Atlas server
client = AtlasClient('http://localhost:21000', ('admin', 'atlasR0cks!'))
# For Kerberos authentication, use HTTPKerberosAuth as shown below
#
# from requests_kerberos import HTTPKerberosAuth
#
# client = AtlasClient('http://localhost:21000', HTTPKerberosAuth())
# to disable SSL certificate validation (not recommended for production use!)
#
# client.session.verify = False
## Step 2: Let's create a database entity
test_db = AtlasEntity({ 'typeName': 'hive_db' })
test_db.attributes = { 'name': 'test_db', 'clusterName': 'prod', 'qualifiedName': 'test_db@prod' }
entity_info = AtlasEntityWithExtInfo()
entity_info.entity = test_db
print('Creating test_db')
resp = client.entity.create_entity(entity_info)
guid_db = resp.get_assigned_guid(test_db.guid)
print(' created test_db: guid=' + guid_db)
## Step 3: Let's create a table entity, and two column entities - in one call
test_tbl = AtlasEntity({ 'typeName': 'hive_table' })
test_tbl.attributes = { 'name': 'test_tbl', 'qualifiedName': 'test_db.test_tbl@prod' }
test_tbl.relationshipAttributes = { 'db': AtlasRelatedObjectId({ 'guid': guid_db }) }
test_col1 = AtlasEntity({ 'typeName': 'hive_column' })
test_col1.attributes = { 'name': 'test_col1', 'type': 'string', 'qualifiedName': 'test_db.test_tbl.test_col1@prod' }
test_col1.relationshipAttributes = { 'table': AtlasRelatedObjectId({ 'guid': test_tbl.guid }) }
test_col2 = AtlasEntity({ 'typeName': 'hive_column' })
test_col2.attributes = { 'name': 'test_col2', 'type': 'string', 'qualifiedName': 'test_db.test_tbl.test_col2@prod' }
test_col2.relationshipAttributes = { 'table': AtlasRelatedObjectId({ 'guid': test_tbl.guid }) }
entities_info = AtlasEntitiesWithExtInfo()
entities_info.entities = [ test_tbl, test_col1, test_col2 ]
print('Creating test_tbl')
resp = client.entity.create_entities(entities_info)
guid_tbl = resp.get_assigned_guid(test_tbl.guid)
guid_col1 = resp.get_assigned_guid(test_col1.guid)
guid_col2 = resp.get_assigned_guid(test_col2.guid)
print(' created test_tbl: guid=' + guid_tbl)
print(' created test_tbl.test_col1: guid=' + guid_col1)
print(' created test_tbl.test_col2: guid=' + guid_col2)
## Step 4: Let's create a view entity that feeds from the table created earlier
# Also create a lineage between the table and the view, and lineages between their columns as well
test_view = AtlasEntity({ 'typeName': 'hive_table' })
test_view.attributes = { 'name': 'test_view', 'qualifiedName': 'test_db.test_view@prod' }
test_view.relationshipAttributes = { 'db': AtlasRelatedObjectId({ 'guid': guid_db }) }
test_view_col1 = AtlasEntity({ 'typeName': 'hive_column' })
test_view_col1.attributes = { 'name': 'test_col1', 'type': 'string', 'qualifiedName': 'test_db.test_view.test_col1@prod' }
test_view_col1.relationshipAttributes = { 'table': AtlasRelatedObjectId({ 'guid': test_view.guid }) }
test_view_col2 = AtlasEntity({ 'typeName': 'hive_column' })
test_view_col2.attributes = { 'name': 'test_col2', 'type': 'string', 'qualifiedName': 'test_db.test_view.test_col2@prod' }
test_view_col2.relationshipAttributes = { 'table': AtlasRelatedObjectId({ 'guid': test_view.guid }) }
test_process = AtlasEntity({ 'typeName': 'hive_process' })
test_process.attributes = { 'name': 'create_test_view', 'userName': 'admin', 'operationType': 'CREATE', 'qualifiedName': 'create_test_view@prod' }
test_process.attributes['queryText'] = 'create view test_view as select * from test_tbl'
test_process.attributes['queryPlan'] = '<queryPlan>'
test_process.attributes['queryId'] = '<queryId>'
test_process.attributes['startTime'] = int(time.time() * 1000)
test_process.attributes['endTime'] = int(time.time() * 1000)
test_process.relationshipAttributes = { 'inputs': [ AtlasRelatedObjectId({ 'guid': guid_tbl }) ], 'outputs': [ AtlasRelatedObjectId({ 'guid': test_view.guid }) ] }
test_col1_lineage = AtlasEntity({ 'typeName': 'hive_column_lineage' })
test_col1_lineage.attributes = { 'name': 'test_view.test_col1 lineage', 'depenendencyType': 'read', 'qualifiedName': 'test_db.test_view.test_col1@prod' }
test_col1_lineage.attributes['query'] = { 'guid': test_process.guid }
test_col1_lineage.relationshipAttributes = { 'inputs': [ AtlasRelatedObjectId({ 'guid': guid_col1 }) ], 'outputs': [ AtlasRelatedObjectId({ 'guid': test_view_col1.guid }) ] }
test_col2_lineage = AtlasEntity({ 'typeName': 'hive_column_lineage' })
test_col2_lineage.attributes = { 'name': 'test_view.test_col2 lineage', 'depenendencyType': 'read', 'qualifiedName': 'test_db.test_view.test_col2@prod' }
test_col2_lineage.attributes['query'] = { 'guid': test_process.guid }
test_col2_lineage.relationshipAttributes = { 'inputs': [ AtlasRelatedObjectId({ 'guid': guid_col2 }) ], 'outputs': [ AtlasRelatedObjectId({ 'guid': test_view_col2.guid }) ] }
entities_info = AtlasEntitiesWithExtInfo()
entities_info.entities = [ test_process, test_col1_lineage, test_col2_lineage ]
entities_info.add_referenced_entity(test_view)
entities_info.add_referenced_entity(test_view_col1)
entities_info.add_referenced_entity(test_view_col2)
print('Creating test_view')
resp = client.entity.create_entities(entities_info)
guid_view = resp.get_assigned_guid(test_view.guid)
guid_view_col1 = resp.get_assigned_guid(test_view_col1.guid)
guid_view_col2 = resp.get_assigned_guid(test_view_col2.guid)
guid_process = resp.get_assigned_guid(test_process.guid)
guid_col1_lineage = resp.get_assigned_guid(test_col1_lineage.guid)
guid_col2_lineage = resp.get_assigned_guid(test_col2_lineage.guid)
print(' created test_view: guid=' + guid_view)
print(' created test_view.test_col1: guid=' + guid_view_col1)
print(' created test_view.test_col2: guid=' + guid_view_col1)
print(' created test_view lineage: guid=' + guid_process)
print(' created test_col1 lineage: guid=' + guid_col1_lineage)
print(' created test_col2 lineage: guid=' + guid_col2_lineage)
## Step 5: Finally, cleanup by deleting entities created above
print('Deleting entities')
resp = client.entity.delete_entities_by_guids([ guid_col1_lineage, guid_col2_lineage, guid_process, guid_view, guid_tbl, guid_db ])
deleted_count = len(resp.mutatedEntities[EntityOperation.DELETE.name]) if resp and resp.mutatedEntities and EntityOperation.DELETE.name in resp.mutatedEntities else 0
print(' ' + str(deleted_count) + ' entities deleted')
For more examples, checkout sample-app
python project in atlas-examples module.
FAQs
Apache Atlas Python Client
We found that apache-atlas demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CVEForecast.org uses machine learning to project a record-breaking surge in vulnerability disclosures in 2025.
Security News
Browserslist-rs now uses static data to reduce binary size by over 1MB, improving memory use and performance for Rust-based frontend tools.
Research
Security News
Eight new malicious Firefox extensions impersonate games, steal OAuth tokens, hijack sessions, and exploit browser permissions to spy on users.