Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

arg-ranker

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

arg-ranker

Ranking the risk of antibiotic resistance for genomes/metagenomes

  • 3.7.2
  • PyPI
  • Socket score

Maintainers
1

arg_ranker

arg_ranker evaluates the risk of ARGs in genomes and metagenomes

Install

experimental version using most updated ARG database (SARGv3)
pip install arg_ranker
Long term support version using the same ARG database in the publication (SARGv1)
pip install arg-ranker==3.0.2

Please make sure to install arg_ranker >= v3

To all users,
We have noticed an error of arg_ranker.v2 when reporting the total ARG abundance in metagenomes.
If the total abundance is used in your research, please update arg_ranker to v3 and re-run your metagenomes (arg_ranker -i $INPUT -kkdb $KRAKENDB).
Alternatively, you can fix arg_ranker.v2 by replacing its original ARG_table.sum.py with ARG_table.sum.py
and re-run the last two commands in arg_ranker.sh python $PATH_to_arg_ranker/bin/ARG_table.sum.py -i ... and arg_ranker -i ....
You can find the path to ARG_table.sum.py in arg_ranker.sh.
Note that this ARG_table.sum.py is only meant for fixing arg_ranker.v2 and the results of arg_ranker.v2.
Please do not replace ARG_table.sum.py in arg_ranker.v3 with this ARG_table.sum.py.
We are really sorry about this inconvenience.
Please feel free to reach out to anniz44@mit.edu if you have any questions.

To check installed version pip show arg_ranker
To upgrade pip install arg_ranker --upgrade

Requirement

  • python 3
  • diamond: conda install -c bioconda diamond=2.1.6 (https://github.com/bbuchfink/diamond)
  • blast+: conda install -c bioconda blast (https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/)
  • For metagenomes:
    • kraken2: conda install -c bioconda kraken2(https://github.com/DerrickWood/kraken2/wiki)
      • to compute the abundance of ARGs as copy number of ARGs per bacterial cell (recommended)
        • download the kraken2 standard database (50 GB of disk space): kraken2-build --standard --db $KRAKENDB
          where $KRAKENDB is your preferred database name/location
        • MicrobeCensu: git clone https://github.com/snayfach/MicrobeCensus && cd MicrobeCensus && python setup.py install to estimate the average genome size for metagenomes. (https://github.com/snayfach/MicrobeCensus)
      • to compute the abundance of ARGs as copy number of ARGs per 16S
        • download the kraken2 16S database (73.2 MB of disk space): kraken2-build --db $DBNAME --special greengenes

How to use it

  • put all your genomes (.fa or .fasta) and metagenomes (.fq or .fastq) into one folder ($INPUT)
  • run arg_ranker -i $INPUT (genomes only)
  • run arg_ranker -i $INPUT -kkdb $KRAKENDB (genomes/metagenomes + kraken2 standard database)
    • or run arg_ranker -i $INPUT -kkdb $KRAKENDB -kkdbtype 16S (kraken2 16S database)
  • run sh arg_ranking/script_output/arg_ranker.sh

Output

  • Sample_ranking_results.txt (Table 1)

    • arg_ranker = 3.4 (SARGv3)
    • python >= 3.5
    • diamond = 2.1.6 - recommended
    • blast = 2.13.0
    • kraken2 = 2.1.2 - 16Gb database
    SampleRank_I_perRank_II_perRank_III_perRank_IV_perUnassessed_perTotal_abuRank_codeRank_I_riskRank_II_riskRank_III_riskRank_IV_riskARGs_unassessed_risknote1
    WEE300_all-trimmed-decont_1.fastq6.6E-022.1E-022.2E-016.9E-010.0E+005.5E+003.1-1.3-1.1-0.9-0.03.11.31.10.90.0hospital_metagenome
    EsCo_genome.fasta7.1E-020.0E+002.1E-017.1E-010.0E+001.4E+013.3-0.0-1.1-0.9-0.03.30.01.10.90.0E.coli_genome
  • Sample_ranking_results.txt (Table 1)

    • arg_ranker = 3.0.2 (SARGv1)
    • python >= 3.5
    • diamond = 0.9.36 - not recommended
    • blast = 2.13.0
    • kraken2 = 2.1.2 - 16Gb database
    SampleRank_I_perRank_II_perRank_III_perRank_IV_perUnassessed_perTotal_abuRank_codeRank_I_riskRank_II_riskRank_III_riskRank_IV_riskARGs_unassessed_risknote1
    WEE300_all-trimmed-decont_1.fastq4.6E-020.0E+006.8E-027.5E-011.3E-011.9E+001.5-0.0-0.4-1.7-0.41.50.00.41.70.4hospital_metagenome
    EsCo_genome.fasta0.0E+000.0E+002.4E-017.6E-010.0E+002.1E+010.0-0.0-1.6-1.7-0.00.00.01.61.70.0E.coli_genome
  • Please note that minor changes within ~two-fold of the Total_abu caused by different diamond and kraken versions can be considered reasonable :)

  1. Rank_I_per - Unassessed_per: percentage of ARGs of a risk Rank
    Total_abu: total abundance of all ARGs
  2. For genomes, we output the copy number of ARGs detected in each genome.
  3. For metagenomes, we compute the abundance of ARGs as the copy number of ARGs divided by the bacterial cell number or 16S copy number in the same metagenome.
    If you downloaded the kraken2 standard database, we compute the copy number of ARGs divided by the bacterial cell number.
    If you downloaded the kraken2 16S database, we compute the copy number of ARGs divided by the 16S copy number.
    The copy number of ARGs, 16S, and bacterial cells were computed as the number of reads mapped to them divided by their gene/genome length.
  4. We compute the contribution of each ARG risk Rank as the average abundance of ARGs of a risk Rank divided by the average abundance of all ARGs
    Rank_I_risk - Unassessed_risk: the contribution of ARGs of a risk Rank
    Rank_code: a code of contribution from Rank I to Unassessed
  • Sample_ARGpresence.txt:
    The abundance, the gene family, and the antibiotic of resistance of ARGs detected in the input samples

Test

run arg_ranker -i example -kkdb $KRAKENDB
run sh arg_ranking/script_output/arg_ranker.sh
The arg_ranking/Sample_ranking_results.txt should look like Table 1 (using kraken2 standard database)

Metadata for your samples (optional)

arg_ranker can merge your sample metadata into the results of ARG ranking (i.e. note1 in Table 1).
Simply put all information you would like to include into a tab-delimited table
Make sure that your sample names are listed as the first column (check example/metadata.txt).

Dr. An-Ni Zhang (MIT), Prof. Eric Alm (MIT), Prof. Tong Zhang* (University of Hong Kong)

Citation

Zhang, AN., Gaston, J.M., Dai, C.L. et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat Commun 12, 4765 (2021). https://doi.org/10.1038/s41467-021-25096-3 Correction: bacA is a bacitracin resistance gene, not a beta-lactamase (Fig 3).

Contact

anniz44@mit.edu or caozhichongchong@gmail.com

Acknowledgement

Special thanks to LeabaeL for their great help in testing various versions of arg_ranker and diamond!

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc