Arista Protobuf / Python gRPC bindings generator & library
This was originally forked from https://github.com/danielgtaylor/python-betterproto @ b8a091ae7055dd949d193695a06c9536ad51eea8.
Afterwards commits up to 1f88b67eeb9871d33da154fd2c859b9d1aed62c1
on python-betterproto
have been cherry-picked.
Changes in this project compared with the base project:
- Renamed to
aristaproto
. - Cut support for Python < 3.9.
- Updating various CI actions and dependencies.
- Merged docs from multiple
rst
files to MarkDown. - Keep nanosecond precision for
Timestamp
.
- Subclass
datetime
to store the original nano-second value when converting from Timestamp
to datetime
. - On conversion from the subclass of
datetime
to Timestamp
the original nano-second value is restored.
Installation
First, install the package. Note that the [compiler]
feature flag tells it to install extra dependencies only needed by the protoc
plugin:
pip install "aristaproto[compiler]"
pip install aristaproto
Getting Started
Compiling proto files
Given you installed the compiler and have a proto file, e.g example.proto
:
syntax = "proto3";
package hello;
// Greeting represents a message you can tell a user.
message Greeting {
string message = 1;
}
You can run the following to invoke protoc directly:
mkdir lib
protoc -I . --python_aristaproto_out=lib example.proto
or run the following to invoke protoc via grpcio-tools:
pip install grpcio-tools
python -m grpc_tools.protoc -I . --python_aristaproto_out=lib example.proto
This will generate lib/hello/__init__.py
which looks like:
from dataclasses import dataclass
import aristaproto
@dataclass
class Greeting(aristaproto.Message):
"""Greeting represents a message you can tell a user."""
message: str = aristaproto.string_field(1)
Now you can use it!
>>> from lib.hello import Greeting
>>> test = Greeting()
>>> test
Greeting(message='')
>>> test.message = "Hey!"
>>> test
Greeting(message="Hey!")
>>> serialized = bytes(test)
>>> serialized
b'\n\x04Hey!'
>>> another = Greeting().parse(serialized)
>>> another
Greeting(message="Hey!")
>>> another.to_dict()
{"message": "Hey!"}
>>> another.to_json(indent=2)
'{\n "message": "Hey!"\n}'
Async gRPC Support
The generated Protobuf Message
classes are compatible with grpclib so you are free to use it if you like. That said, this project also includes support for async gRPC stub generation with better static type checking and code completion support. It is enabled by default.
Given an example service definition:
syntax = "proto3";
package echo;
message EchoRequest {
string value = 1;
// Number of extra times to echo
uint32 extra_times = 2;
}
message EchoResponse {
repeated string values = 1;
}
message EchoStreamResponse {
string value = 1;
}
service Echo {
rpc Echo(EchoRequest) returns (EchoResponse);
rpc EchoStream(EchoRequest) returns (stream EchoStreamResponse);
}
Generate echo proto file:
python -m grpc_tools.protoc -I . --python_aristaproto_out=. echo.proto
A client can be implemented as follows:
import asyncio
import echo
from grpclib.client import Channel
async def main():
channel = Channel(host="127.0.0.1", port=50051)
service = echo.EchoStub(channel)
response = await service.echo(echo.EchoRequest(value="hello", extra_times=1))
print(response)
async for response in service.echo_stream(echo.EchoRequest(value="hello", extra_times=1)):
print(response)
channel.close()
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
which would output
EchoResponse(values=['hello', 'hello'])
EchoStreamResponse(value='hello')
EchoStreamResponse(value='hello')
This project also produces server-facing stubs that can be used to implement a Python
gRPC server.
To use them, simply subclass the base class in the generated files and override the
service methods:
import asyncio
from echo import EchoBase, EchoRequest, EchoResponse, EchoStreamResponse
from grpclib.server import Server
from typing import AsyncIterator
class EchoService(EchoBase):
async def echo(self, echo_request: "EchoRequest") -> "EchoResponse":
return EchoResponse([echo_request.value for _ in range(echo_request.extra_times)])
async def echo_stream(self, echo_request: "EchoRequest") -> AsyncIterator["EchoStreamResponse"]:
for _ in range(echo_request.extra_times):
yield EchoStreamResponse(echo_request.value)
async def main():
server = Server([EchoService()])
await server.start("127.0.0.1", 50051)
await server.wait_closed()
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
JSON
Both serializing and parsing are supported to/from JSON and Python dictionaries using the following methods:
- Dicts:
Message().to_dict()
, Message().from_dict(...)
- JSON:
Message().to_json()
, Message().from_json(...)
For compatibility the default is to convert field names to camelCase
. You can control this behavior by passing a casing value, e.g:
MyMessage().to_dict(casing=aristaproto.Casing.SNAKE)
Determining if a message was sent
Sometimes it is useful to be able to determine whether a message has been sent on the wire. This is how the Google wrapper types work to let you know whether a value is unset, set as the default (zero value), or set as something else, for example.
Use aristaproto.serialized_on_wire(message)
to determine if it was sent. This is a little bit different from the official Google generated Python code, and it lives outside the generated Message
class to prevent name clashes. Note that it only supports Proto 3 and thus can only be used to check if Message
fields are set. You cannot check if a scalar was sent on the wire.
>>> mymessage.HasField('myfield')
>>> aristaproto.serialized_on_wire(mymessage.myfield)
One-of Support
Protobuf supports grouping fields in a oneof
clause. Only one of the fields in the group may be set at a given time. For example, given the proto:
syntax = "proto3";
message Test {
oneof foo {
bool on = 1;
int32 count = 2;
string name = 3;
}
}
On Python 3.10 and later, you can use a match
statement to access the provided one-of field, which supports type-checking:
test = Test()
match test:
case Test(on=value):
print(value)
case Test(count=value):
print(value)
case Test(name=value):
print(value)
case _:
print("No value provided")
You can also use aristaproto.which_one_of(message, group_name)
to determine which of the fields was set. It returns a tuple of the field name and value, or a blank string and None
if unset.
>>> test = Test()
>>> aristaproto.which_one_of(test, "foo")
["", None]
>>> test.on = True
>>> aristaproto.which_one_of(test, "foo")
["on", True]
>>> test.count = 57
>>> aristaproto.which_one_of(test, "foo")
["count", 57]
>>> test.name = ""
>>> aristaproto.which_one_of(test, "foo")
["name", ""]
Again this is a little different than the official Google code generator:
>>> message.WhichOneof("group")
"foo"
>>> aristaproto.which_one_of(message, "group")
["foo", "foo's value"]
Well-Known Google Types
Google provides several well-known message types like a timestamp, duration, and several wrappers used to provide optional zero value support. Each of these has a special JSON representation and is handled a little differently from normal messages. The Python mapping for these is as follows:
Google Message | Python Type | Default |
---|
google.protobuf.duration | datetime.timedelta | 0 |
google.protobuf.timestamp | Timezone-aware datetime.datetime | 1970-01-01T00:00:00Z |
google.protobuf.*Value | Optional[...] | None |
google.protobuf.* | aristaproto.lib.google.protobuf.* | None |
For the wrapper types, the Python type corresponds to the wrapped type, e.g. google.protobuf.BoolValue
becomes Optional[bool]
while google.protobuf.Int32Value
becomes Optional[int]
. All of the optional values default to None
, so don't forget to check for that possible state. Given:
syntax = "proto3";
import "google/protobuf/duration.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/wrappers.proto";
message Test {
google.protobuf.BoolValue maybe = 1;
google.protobuf.Timestamp ts = 2;
google.protobuf.Duration duration = 3;
}
You can do stuff like:
>>> t = Test().from_dict({"maybe": True, "ts": "2019-01-01T12:00:00Z", "duration": "1.200s"})
>>> t
Test(maybe=True, ts=datetime.datetime(2019, 1, 1, 12, 0, tzinfo=datetime.timezone.utc), duration=datetime.timedelta(seconds=1, microseconds=200000))
>>> t.ts - t.duration
datetime.datetime(2019, 1, 1, 11, 59, 58, 800000, tzinfo=datetime.timezone.utc)
>>> t.ts.isoformat()
'2019-01-01T12:00:00+00:00'
>>> t.maybe = None
>>> t.to_dict()
{'ts': '2019-01-01T12:00:00Z', 'duration': '1.200s'}
Generating Pydantic Models
You can use python-aristaproto to generate pydantic based models, using
pydantic dataclasses. This means the results of the protobuf unmarshalling will
be typed checked. The usage is the same, but you need to add a custom option
when calling the protobuf compiler:
protoc -I . --python_aristaproto_opt=pydantic_dataclasses --python_aristaproto_out=lib example.proto
With the important change being --python_aristaproto_opt=pydantic_dataclasses
. This will
swap the dataclass implementation from the builtin python dataclass to the
pydantic dataclass. You must have pydantic as a dependency in your project for
this to work.
Development
Requirements
Setup
poetry install -E compiler
poetry shell
Code style
This project enforces black python code formatting.
Before committing changes run:
poe format
To avoid merge conflicts later, non-black formatted python code will fail in CI.
Tests
There are two types of tests:
- Standard tests
- Custom tests
Standard tests
Adding a standard test case is easy.
- Create a new directory
aristaproto/tests/inputs/<name>
- add
<name>.proto
with a message called Test
- add
<name>.json
with some test data (optional)
It will be picked up automatically when you run the tests.
Custom tests
Custom tests are found in tests/test_*.py
and are run with pytest.
Running
Here's how to run the tests.
poe generate
poe test
To run tests as they are run in CI (with tox) run:
poe full-test
(Re)compiling Google Well-known Types
Betterproto includes compiled versions for Google's well-known types at src/aristaproto/lib/google.
Be sure to regenerate these files when modifying the plugin output format, and validate by running the tests.
Normally, the plugin does not compile any references to google.protobuf
, since they are pre-compiled. To force compilation of google.protobuf
, use the option --custom_opt=INCLUDE_GOOGLE
.
Assuming your google.protobuf
source files (included with all releases of protoc
) are located in /usr/local/include
, you can regenerate them as follows:
protoc \
--plugin=protoc-gen-custom=src/aristaproto/plugin/main.py \
--custom_opt=INCLUDE_GOOGLE \
--custom_out=src/aristaproto/lib \
-I /usr/local/include/ \
/usr/local/include/google/protobuf/*.proto
License
Copyright 2023 Arista Networks
Copyright 2019-2023 Daniel G. Taylor
This software is free to use under the MIT license. See the LICENSE file for license text.