
Research
/Security News
Contagious Interview Campaign Escalates With 67 Malicious npm Packages and New Malware Loader
North Korean threat actors deploy 67 malicious npm packages using the newly discovered XORIndex malware loader.
Audio2Chat converts multi-speaker audio files into chat format using AssemblyAI for speaker diarization and optionally Whisper for enhanced transcription.
# Install from PyPI
pip install audio2chat
# Or install from source
git clone https://github.com/yourusername/audio2chat.git
cd audio2chat
pip install -e .
Install FFmpeg:
# Ubuntu/Debian
sudo apt update && sudo apt install ffmpeg
# MacOS
brew install ffmpeg
# Windows (using Chocolatey)
choco install ffmpeg
You need to have an Assembly AI account and an API key to use audio2chat. Once you setup an account, you can find the API key on your dashboard.
Basic usage:
# Process local audio file
audio2chat input.wav --api-key YOUR_ASSEMBLYAI_KEY --output output_dir
# Process YouTube video
audio2chat "https://youtube.com/watch?v=xxxxx" --api-key YOUR_ASSEMBLYAI_KEY --output output_dir
All options:
audio2chat --help
required arguments:
input Input audio file path or YouTube URL
--api-key API_KEY AssemblyAI API key
output settings:
--output OUTPUT Output directory for audio and chat data (default: output)
--download-format {mp3,wav}
Audio format for YouTube downloads (default: wav)
transcription settings:
--language LANGUAGE Language code for transcription (default: en)
--num-speakers NUM Expected number of speakers (default: auto-detect)
--use-whisper Use Whisper for enhanced transcription (default: False)
chat generation settings:
--min-segment-confidence CONF
Minimum confidence score to include segment (default: 0.5)
--merge-threshold THRESH
Time threshold to merge adjacent utterances (default: 1.0)
--min-duration DUR Minimum duration for a chat segment (default: 0.5)
--include-metadata Include additional metadata in output (default: True)
--include-word-timestamps
Include word-level timing information (default: False)
vocabulary settings:
--word-boost [WORDS ...]
List of words to boost recognition for
other:
--verbose, -v Enable verbose logging
from audio2chat.pipeline import AudioChatPipeline
from audio2chat.youtube_downloader import download_audio
# For YouTube videos
audio_path = download_audio(
"https://youtube.com/watch?v=xxxxx",
output_dir="downloads",
audio_format="wav"
)
# Initialize pipeline
pipeline = AudioChatPipeline(
api_key="YOUR_ASSEMBLYAI_KEY",
language="en",
num_speakers=2, # or None for auto-detect
use_whisper=True, # enable Whisper for better transcription
include_word_timestamps=True
)
# Process file
chat_data = pipeline.process_file(audio_path, "output/chat.json")
{
"messages": [
{
"speaker": "A",
"text": "Hello there!",
"start": 0,
"end": 1500,
"words": [
{
"text": "Hello",
"start": 0,
"end": 750,
"confidence": 0.98
},
{
"text": "there",
"start": 750,
"end": 1500,
"confidence": 0.95
}
]
}
],
"metadata": {
"num_speakers": 2,
"speakers": ["A", "B"],
"transcription": "whisper+assemblyai"
}
}
Run tests:
# Set up environment
export ASSEMBLYAI_API_KEY=your_key_here
# Add test audio file
cp your_test_audio.wav tests/test_data/input.wav
# Run tests
pytest tests/test_pipeline.py tests/test_chat_builder.py # without Whisper
pytest tests/ # all tests including Whisper
This project is licensed under the MIT license.
From neuralwork with :heart:
FAQs
Generate chat data from multi-speaker audio files
We found that audio2chat demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
/Security News
North Korean threat actors deploy 67 malicious npm packages using the newly discovered XORIndex malware loader.
Security News
Meet Socket at Black Hat & DEF CON 2025 for 1:1s, insider security talks at Allegiant Stadium, and a private dinner with top minds in software supply chain security.
Security News
CAI is a new open source AI framework that automates penetration testing tasks like scanning and exploitation up to 3,600× faster than humans.