Socket
Book a DemoInstallSign in
Socket

aura-compression

Package Overview
Dependencies
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

aura-compression

AI-Optimized Hybrid Compression Protocol for Real-Time Communication

pipPyPI
Version
1.1.3
Maintainers
1

AURA Compression Toolkit

AURA is an experimental, Python-first playground for hybrid compression. It mixes template‑aware encoders, semantic heuristics, and audit-friendly metadata so you can explore how structured traffic (API chatter, AI↔AI messages, log streams) behaves under different strategies. The project is not production-ready, but it now ships with a lean test suite and CLI tooling that make local experiments straightforward.

TL;DR

Status
VisionEfficient, auditable compression tuned for repetitive, structured text
Current maturityAlpha — safe for prototyping only
Runtime supportCPython ≥ 3.10 (pure Python, no native deps)
Test coverage~44 % (core pipelines + CLI smoke tests)
LicenseApache 2.0 (see LICENSE for patent notice)

Installation

git clone https://github.com/hendrixx-cnc/AURA.git
cd AURA
python3 -m venv .venv
source .venv/bin/activate
pip install -e ".[dev]"

The dev extra installs pytest, coverage tooling, and linters.

Quick Start (Python API)

from aura_compression.compressor_refactored import ProductionHybridCompressor

compressor = ProductionHybridCompressor(
    enable_aura=False,          # disable background discovery worker
    enable_fast_path=True,
    enable_audit_logging=False,
    template_sync_interval_seconds=None,
)

message = "Order 42: status=ready"
payload, method, metadata = compressor.compress(message)
restored = compressor.decompress(payload)

assert restored == message
print(method.name, metadata["ratio"])

When does it shine?

  • You control both ends of the link (AI ↔ AI, microservices, etc.)
  • Payloads are verbose but structured (logs, JSON, templated replies)
  • You’re comfortable tuning template libraries / cache policy

When to avoid it

  • Need wire compatibility with gzip/zstd/brotli
  • Response time budgets are tight (large-file compression is slow)
  • You cannot ship persistent template state alongside payloads

Large-File CLI

The tools/compress_large_file.py script provides a streaming container format. It records chunk metadata (including template usage) so decompression works on a fresh machine.

# Compress with a progress bar and write stats to JSON
python tools/compress_large_file.py compress \
  --input "/path/to/enwik8" \
  --output "/path/to/enwik8.aura" \
  --chunk-size 64K \
  --progress bar \
  --stats-format json \
  --stats-file stats/compress.json

# Round-trip integrity check without writing output
python tools/compress_large_file.py verify \
  --input "/path/to/enwik8.aura" \
  --progress percent

# Inspect container metadata (headers, sample chunks, template IDs)
python tools/compress_large_file.py info \
  --input "/path/to/enwik8.aura" \
  --max-chunks 5 \
  --stats-format table

Key switches:

FlagDescription
--chunk-sizeBytes or suffixed value (256K, 4M, …)
--progressauto, bar, percent, none
--stats-formattable (default) or json
--stats-filePath to persist stats output (useful in CI)

Synthetic Network Smoke Test

To sanity-check the compressor against AI‑style traffic:

pytest tests/test_network_simulation_smoke.py -q

The generator streams ~120 messages (API calls, logs, chat replies, binary blobs) and asserts:

  • Round-trip fidelity for every payload
  • Multiple compression strategies selected
  • Binary semantic templates triggered at least once
  • Average compression ratio stays sensible (>0.5)

Use this as a starting point when tailoring the system to your own message mix.

Testing & Coverage

pytest -q                # fast path (~40 s)
pytest --cov=src --cov=tools --cov-report=term-missing

Current suite highlights:

  • tests/test_cli_utilities.py — input parsing, progress modes, container inspection
  • tests/test_core_components.py — basic round-trip compressor + template matching
  • tests/test_network_simulation_smoke.py — synthetic AI/network workload

Large areas of the codebase remain untested (BRIO internals, ML selector, legacy tools). Treat reported coverage as a proxy for explored functionality, not as a production safety net.

Roadmap Snapshot

  • ✅ Streamlined large-file CLI with inspect/verify subcommands
  • ✅ Lean regression tests to keep core behavior honest
  • 🔜 Refactor BRIO and ML pipelines into testable, modular units
  • 🔜 Benchmark suite vs. gzip/zstd/brotli on realistic corpora
  • 🔜 Documentation on template discovery + SQLite persistence internals

Contributing

  • Open an issue describing your proposal.
  • Fork the repo and create a feature branch.
  • Keep changes focused; add tests when practical.
  • Run pytest -q before submitting your PR.

Helpful areas:

  • Improving template discovery robustness (error handling, logging)
  • Instrumentation and profiling of large-file compression
  • Type hints / static analysis for critical modules
  • Benchmarks and data-driven comparisons

License & Patents

Licensed under Apache 2.0. The project references patent-pending techniques; the open-source distribution grants a royalty-free license for evaluation and non-commercial use. See LICENSE for full text and obligations.

Contact

  • Author: Todd Hendricks — todd@auraprotocol.org
  • Issues & discussions: GitHub Issues

If you do end up using AURA in research or prototyping, feedback on data sets, compression ratios, and pain points is greatly appreciated.

Keywords

compression

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts