Aurelio SDK
The Aurelio Platform SDK. API references
Installation
To install the Aurelio SDK, use pip or poetry:
pip install aurelio-sdk
Authentication
The SDK requires an API key for authentication.
Get key from Aurelio Platform.
Set your API key as an environment variable:
export AURELIO_API_KEY=your_api_key_here
Usage
See examples for more details.
Initializing the Client
from aurelio_sdk import AurelioClient
import os
client = AurelioClient(api_key=os.environ["AURELIO_API_KEY"])
or use asynchronous client:
from aurelio_sdk import AsyncAurelioClient
client = AsyncAurelioClient(api_key="your_api_key_here")
Chunk
from aurelio_sdk import ChunkingOptions, ChunkResponse
chunking_options = ChunkingOptions(
chunker_type="semantic", max_chunk_length=400, window_size=5
)
response: ChunkResponse = client.chunk(
content="Your text here to be chunked", processing_options=chunking_options
)
PDF Files
from aurelio_sdk import ExtractResponse
file_path = "path/to/your/file.pdf"
response_pdf_file: ExtractResponse = client.extract_file(
file_path=file_path, quality="low", chunk=True, wait=-1
)
Video Files
from aurelio_sdk import ExtractResponse
file_path = "path/to/your/file.mp4"
response_video_file: ExtractResponse = client.extract_file(
file_path=file_path, quality="low", chunk=True, wait=-1
)
PDF URLs
from aurelio_sdk import ExtractResponse
url = "https://arxiv.org/pdf/2408.15291"
response_pdf_url: ExtractResponse = client.extract_url(
url=url, quality="low", chunk=True, wait=-1
)
Video URLs
from aurelio_sdk import ExtractResponse
url = "https://storage.googleapis.com/gtv-videos-bucket/sample/ForBiggerMeltdowns.mp4"
response_video_url: ExtractResponse = client.extract_url(
url=url, quality="low", chunk=True, wait=-1
)
Waiting for completion and checking document status
response_pdf_url: ExtractResponse = client.extract_url(
url="https://arxiv.org/pdf/2408.15291", quality="high", chunk=True, wait=10
)
document_response: ExtractResponse = client.get_document(
document_id=response_pdf_file.document.id
)
print("Status:", document_response.status)
document_response = client.wait_for(
document_id=response_pdf_file.document.id, wait=300
)
Embeddings
from aurelio_sdk import EmbeddingResponse
response: EmbeddingResponse = client.embedding(
input="Your text here to be embedded",
model="bm25")
response: EmbeddingResponse = client.embedding(
input=["Your text here to be embedded", "Your text here to be embedded"]
)
Response Structure
The ExtractResponse
object contains the following key information:
status
: The current status of the extraction taskusage
: Information about token usage, pages processed, and processing timemessage
: Any relevant messages about the extraction processdocument
: The extracted document information, including its IDchunks
: The extracted text, divided into chunks if chunking was enabled
The EmbeddingResponse
object contains the following key information:
message
: Any relevant messages about the embedding processmodel
: The model name used for embeddingusage
: Information about token usage, pages processed, and processing timedata
: The embedded documents
Best Practices
- Use appropriate wait times based on your use case and file sizes.
- Use async client for better performance.
- For large files or when processing might take longer, enable polling for long-hanging requests.
- Always handle potential exceptions and check the status of the response.
- Adjust the
quality
parameter based on your needs. "low" is faster but less accurate, while "high" is slower but more accurate.