Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

autocrosswalk

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

autocrosswalk

Automatic Crosswalk

  • 0.0.24
  • PyPI
  • Socket score

Maintainers
1

autocrosswalk: A generic approach to crosswalking

This library automates crosswalks from one dataframe to another.

Please contact the authors below if you find any bugs or have any suggestions for improvement. Thank you!

Author: Nicolaj Søndergaard Mühlbach (n.muhlbach at gmail dot com, muhlbach at mit dot edu)

Code dependencies

This code has the following dependencies:

  • Python >=3.6
  • pandas >=1.3

Installation

There are no heavy dependencies for this library to work. We have included an example that requires a parquet reader, e.g., pyarrow, brotli, or fastparquet. One needs to have one of them installed in order to use the example data provided. Otherwise, go ahead and install by pip install autocrosswalk.

Usage

# Libraries
from autocrosswalk.main import AutoCrosswalk
from autocrosswalk.tools import load_example_data

# Load example data
data = load_example_data()

# Separate into old and new data, i.e., we crosswalk the 'data_from' to 'data_to' 
data_from = data.loc[data["DB"]=="db_20_0"]
data_to = data.loc[data["DB"]=="db_26_1"]

# Instantiate
autocrosswalk = AutoCrosswalk(n_best_match=3,
                              prioritize_exact_match=True,
                              enforce_completeness=True,
                              verbose=2)

# Generate crosswalk file
df_crosswalk = autocrosswalk.generate_crosswalk(df_from=data_from,
                                                df_to=data_to,
                                                numeric_key=['O*NET-SOC Code'],
                                                text_key=['Job title'])

# Perform crosswalk
df_updated = autocrosswalk.perform_crosswalk(crosswalk=df_crosswalk,
                                             df=data_from,
                                             values=["Data Value"],
                                             by=['Date', 'DB',
                                                 'Category', 'Element ID',
                                                 'Element Name','Element description'])

# Check if number of unique keys match
print(len(df_updated["O*NET-SOC Code"].unique()) == len(data_to["O*NET-SOC Code"].unique()))
print(len(df_updated["Job title"].unique()) == len(data_to["Job title"].unique()))

# Now, 'df_updated' has all new keys from 'data_to'!

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc