You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

autopilotml

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

autopilotml

A package for automating machine learning tasks

1.0.14
Source
pipPyPI
Maintainers
1

version total autopilotml downloads license Colab

Autopilotml

Automated machine learning library for analytics

Installation

  • pip install autopilotml

Usage

Load data

from autopilotml import load_data, load_database

# For csv files
df = load_data(path = "dataset/titanic_train.csv", csv=True, **kwargs)

# For excel notebook
df = load_data(path = "dataset/titanic_train.xlsx", excel=True, **kwargs)

# To Load data from Database

# This framework supports sqlite, 'mysql', 'postgres', 'MongoDB'
df = load_database(database_type='sqlite', sqlite_db_path = 'database.db', query='select * from employee_table')

Data Preprocessing

from autopilotml import preprocessing

# If changing any values in the dictionary, whole dictionary has to be provided.

df = preprocessing(dataframe=df, label_column='Survived',
                                missing={
                                    'type':'impute',
                                    'drop_columns': False, 
                                    'threshold': 0.25, 
                                    'strategy_numerical': 'knn',
                                    'strategy_categorical': 'most_frequent',
                                    'fill_value': None},
                                outlier={
                                    'method': 'None',
                                    'zscore_threshold': 3,
                                    'iqr_threshold': 1.5,
                                    'Lc': 0.05, 
                                    'Uc': 0.95,
                                    'cap': False})

Data Transformation

from autopilotml import transformation

# If the target_transform is true, then the function  return 3 objects, (e.g) dataframe, feature encoder and target encoder
# else it will return 2 objects dataframe and feature encoder
df, encoder = transformation(dataframe=df,
                                label_column='Survived', 
                                type = 'ordinal',
                                target_transform = False, 
                                cardinality = True, 
                                Cardinality_threshold = 0.3)

Scaling

# Here if target_scaling = True only applicable for regression then it will return 3 objects dataframe, feature scaler and target scaler

from autopilotml import scaling

df, scaler = scaling(df, label_column= 'Survived', type = 'standard', target_scaling = False)

Feature Selecction

from autopilotml import feature_selection

df, selector = feature_selection(dataframe=df, label_column='Survived', 
                                estimator='RandomForestClassifier',           
                                type='rfe', max_features=10, 
                                min_features=2, scoring= 'accuracy', 
                                cv=5)

Model Training

from autopilotml import training

model = training(dataframe=df, label_column='Survived', model_name='SVC', problem_type='Classification', 
                target_scaler=None, test_split =0.15, hypertune=True, n_epochs=100)

MLFlow - Track the Model Training and model Parameters

!mlflow ui

Keywords

autopilotml

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts