New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

autoreject

Package Overview
Dependencies
Maintainers
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

autoreject

Automated rejection and repair of epochs in M/EEG.

0.4.2
Source
PyPI
Maintainers
3

autoreject

|CircleCI|_ |GitHub Actions|_ |Codecov|_ |PyPI|_ |Conda-Forge|_

.. |CircleCI| image:: https://circleci.com/gh/autoreject/autoreject/tree/master.svg?style=shield&circle-token=:circle-token .. _CircleCI: https://circleci.com/gh/autoreject/autoreject

.. |GitHub Actions| image:: https://github.com/autoreject/autoreject/actions/workflows/test.yml/badge.svg .. _GitHub Actions: https://github.com/autoreject/autoreject/actions/workflows/test.yml

.. |Codecov| image:: http://codecov.io/github/autoreject/autoreject/coverage.svg?branch=master .. _Codecov: http://codecov.io/github/autoreject/autoreject?branch=master

.. |PyPI| image:: https://badge.fury.io/py/autoreject.svg .. _PyPI: https://badge.fury.io/py/autoreject

.. |Conda-Forge| image:: https://img.shields.io/conda/vn/conda-forge/autoreject.svg .. _Conda-Forge: https://anaconda.org/conda-forge/autoreject/

This is a library to automatically reject bad trials and repair bad sensors in magneto-/electroencephalography (M/EEG) data.

.. image:: https://autoreject.github.io/stable/_images/sphx_glr_plot_auto_repair_001.png :width: 400

The documentation can be found under the following links:

  • for the stable release <https://autoreject.github.io/stable/index.html>_
  • for the latest (development) version <https://autoreject.github.io/dev/index.html>_

.. docs_readme_include_label

Installation

We recommend the Anaconda Python distribution <https://www.anaconda.com/>_ and a Python version >= 3.8. To obtain the stable release of autoreject, you can use pip::

pip install -U autoreject

Or conda::

conda install -c conda-forge autoreject

If you want the latest (development) version of autoreject, use::

pip install https://api.github.com/repos/autoreject/autoreject/zipball/master

If you do not have admin privileges on the computer, use the --user flag with pip.

To check if everything worked fine, you can do::

python -c 'import autoreject'

and it should not give any error messages.

Below, we list the dependencies for autoreject. All required dependencies are installed automatically when you install autoreject.

  • mne (>=1.0)
  • numpy (>=1.20.2)
  • scipy (>=1.6.3)
  • scikit-learn (>=0.24.2)
  • joblib
  • matplotlib (>=3.4.0)

Optional dependencies are:

  • openneuro-py (>= 2021.10.1, for fetching data from OpenNeuro.org <https://openneuro.org>_)

Quickstart

The easiest way to get started is to copy the following three lines of code in your script:

.. code:: python

>>> from autoreject import AutoReject
>>> ar = AutoReject()
>>> epochs_clean = ar.fit_transform(epochs)  # doctest: +SKIP

This will automatically clean an epochs object read in using MNE-Python. To get the rejection dictionary, simply do:

.. code:: python

>>> from autoreject import get_rejection_threshold
>>> reject = get_rejection_threshold(epochs)  # doctest: +SKIP

We also implement RANSAC from the PREP pipeline <https://doi.org/10.3389/fninf.2015.00016>_ (see PyPREP <https://github.com/sappelhoff/pyprep>_ for a full implementation of the PREP pipeline). The API is the same:

.. code:: python

>>> from autoreject import Ransac
>>> rsc = Ransac()
>>> epochs_clean = rsc.fit_transform(epochs)  # doctest: +SKIP

For more details check out the example to automatically detect and repair bad epochs <https://autoreject.github.io/stable/_images/sphx_glr_plot_auto_repair_001.png>_.

Bug reports

Please use the GitHub issue tracker <https://github.com/autoreject/autoreject/issues>_ to report bugs.

Cite

[1] Mainak Jas, Denis Engemann, Federico Raimondo, Yousra Bekhti, and Alexandre Gramfort, "Automated rejection and repair of bad trials in MEG/EEG <https://hal.archives-ouvertes.fr/hal-01313458/document>_." In 6th International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2016.

[2] Mainak Jas, Denis Engemann, Yousra Bekhti, Federico Raimondo, and Alexandre Gramfort. 2017. "Autoreject: Automated artifact rejection for MEG and EEG data <http://www.sciencedirect.com/science/article/pii/S1053811917305013>_". NeuroImage, 159, 417-429.

Keywords

electroencephalography eeg magnetoencephalography meg preprocessing analysis

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts