
Security News
Opengrep Adds Apex Support and New Rule Controls in Latest Updates
The latest Opengrep releases add Apex scanning, precision rule tuning, and performance gains for open source static code analysis.
Easy to use class-balanced cross-entropy and focal loss implementation for Pytorch.
Easy-to-use, class-balanced, cross-entropy and focal loss implementation for Pytorch.
When training dataset labels are imbalanced, one thing to do is to balance the loss across sample classes.
pip install balanced-loss
import torch
from balanced_loss import Loss
# outputs and labels
logits = torch.tensor([[0.78, 0.1, 0.05]]) # 1 batch, 3 class
labels = torch.tensor([0]) # 1 batch
# focal loss
focal_loss = Loss(loss_type="focal_loss")
loss = focal_loss(logits, labels)
# cross-entropy loss
ce_loss = Loss(loss_type="cross_entropy")
loss = ce_loss(logits, labels)
# binary cross-entropy loss
bce_loss = Loss(loss_type="binary_cross_entropy")
loss = bce_loss(logits, labels)
import torch
from balanced_loss import Loss
# outputs and labels
logits = torch.tensor([[0.78, 0.1, 0.05]]) # 1 batch, 3 class
labels = torch.tensor([0]) # 1 batch
# number of samples per class in the training dataset
samples_per_class = [30, 100, 25] # 30, 100, 25 samples for labels 0, 1 and 2, respectively
# class-balanced focal loss
focal_loss = Loss(
loss_type="focal_loss",
samples_per_class=samples_per_class,
class_balanced=True
)
loss = focal_loss(logits, labels)
# class-balanced cross-entropy loss
ce_loss = Loss(
loss_type="cross_entropy",
samples_per_class=samples_per_class,
class_balanced=True
)
loss = ce_loss(logits, labels)
# class-balanced binary cross-entropy loss
bce_loss = Loss(
loss_type="binary_cross_entropy",
samples_per_class=samples_per_class,
class_balanced=True
)
loss = bce_loss(logits, labels)
import torch
from balanced_loss import Loss
# outputs and labels
logits = torch.tensor([[0.78, 0.1, 0.05]]) # 1 batch, 3 class
labels = torch.tensor([0])
# number of samples per class in the training dataset
samples_per_class = [30, 100, 25] # 30, 100, 25 samples for labels 0, 1 and 2, respectively
# class-balanced focal loss
focal_loss = Loss(
loss_type="focal_loss",
beta=0.999, # class-balanced loss beta
fl_gamma=2, # focal loss gamma
samples_per_class=samples_per_class,
class_balanced=True
)
loss = focal_loss(logits, labels)
What is the difference between this repo and vandit15's?
torch.nn.Module
https://arxiv.org/abs/1901.05555
FAQs
Easy to use class-balanced cross-entropy and focal loss implementation for Pytorch.
We found that balanced-loss demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The latest Opengrep releases add Apex scanning, precision rule tuning, and performance gains for open source static code analysis.
Security News
npm now supports Trusted Publishing with OIDC, enabling secure package publishing directly from CI/CD workflows without relying on long-lived tokens.
Research
/Security News
A RubyGems malware campaign used 60 malicious packages posing as automation tools to steal credentials from social media and marketing tool users.