![Create React App Officially Deprecated Amid React 19 Compatibility Issues](https://cdn.sanity.io/images/cgdhsj6q/production/04fa08cf844d798abc0e1a6391c129363cc7e2ab-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Create React App Officially Deprecated Amid React 19 Compatibility Issues
Create React App is officially deprecated due to React 19 issues and lack of maintenance—developers should switch to Vite or other modern alternatives.
This repo provides the out-of-box face detection, face alignment, head pose estimation and face parsing with batch input support and enables real-time application on CPU.
While not required, for optimal performance it is highly recommended to run the code using a CUDA enabled GPU.
The easiest way to install it is using pip:
pip install git+https://github.com/elliottzheng/batch-face.git@master
No extra setup needs, most of the pretrained weights will be downloaded automatically.
If you have trouble install from source, you can try install from PyPI:
pip install batch-face
the PyPI version is not guaranteed to be the latest version, but we will try to keep it up to date.
You can clone the repo and run tests like this
python -m tests.camera
We wrap the RetinaFace model and provide a simple API for batch face detection.
import cv2
from batch_face import RetinaFace
detector = RetinaFace(gpu_id=0)
img = cv2.imread("examples/obama.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
max_size = 1080 # if the image's max size is larger than 1080, it will be resized to 1080, -1 means no resize
resize = 1 # resize the image to speed up detection, default is 1, no resize
threshold = 0.95 # confidence threshold
# now we recommand to specify return_dict=True to get the result in a more readable way
faces = detector(img, threshold=threshold, resize=resize, max_size=max_size, return_dict=True)
face = faces[0]
box = face['box']
kps = face['kps']
score = face['score']
# the old way to get the result
faces = detector(img, threshold=threshold, resize=resize, max_size=max_size)
box, kps, score = faces[0]
In order to specify the device (GPU or CPU) on which the code will run one can explicitly pass the device id.
from batch_face import RetinaFace
# 0 means using GPU with id 0 for inference
# default -1: means using cpu for inference
fp16 = True # use fp16 to speed up detection and save GPU memory
detector = RetinaFace(gpu_id=0, fp16=True)
GPU(GTX 1080TI,batch size=1) | GPU(GTX 1080TI,batch size=750) | CPU(Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz) | |
---|---|---|---|
FPS | 44.02405810720893 | 96.64058005582535 | 15.452635835550483 |
SPF | 0.022714852809906007 | 0.010347620010375976 | 0.0647138786315918 |
Detector with CUDA process batch input faster than the same amount of single input.
import cv2
from batch_face import RetinaFace
detector = RetinaFace()
img= cv2.imread('examples/obama.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
max_size = 1080 # if the image's max size is larger than 1080, it will be resized to 1080, -1 means no resize
resize = 1 # resize the image to speed up detection, default is 1, no resize
resize_device = 'cpu' # resize on cpu or gpu, default is gpu
threshold = 0.95 # confidence threshold for detection
batch_size = 100 # batch size for detection, the larger the faster but more memory consuming, default is -1, which means batch_size = number of input images
batch_images = [img,img] # pseudo batch input
all_faces = detector(batch_images, threshold=threshold, resize=resize, max_size=max_size, batch_size=batch_size)
faces = all_faces[0] # the first input image's detection result
box, kps, score = faces[0] # the first face's detection result
Note: All the input images must of the same size, for input images with different size, please use detector.pseudo_batch_detect
.
We wrap the Face Landmark model and provide a simple API for batch face alignment.
from batch_face import drawLandmark_multiple, LandmarkPredictor, RetinaFace
predictor = LandmarkPredictor(0)
detector = RetinaFace(0)
imgname = "examples/obama.jpg"
img = cv2.imread(imgname)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
faces = detector(img)
if len(faces) == 0:
print("NO face is detected!")
exit(-1)
# the first input for the predictor is a list of face boxes. [[x1,y1,x2,y2]]
results = predictor(faces, img, from_fd=True) # from_fd=True to convert results from our detection results to simple boxes
for face, landmarks in zip(faces, results):
img = drawLandmark_multiple(img, face[0], landmarks)
We wrap the SixDRepNet model and provide a simple API for batch head pose estimation.
from batch_face import RetinaFace, SixDRep, draw_landmarks, load_frames_rgb, Timer
vis = True
gpu_id = 0
batch_size = 100
threshold = 0.95
detector = RetinaFace(gpu_id=gpu_id)
head_pose_estimator = SixDRep(gpu_id=gpu_id)
video_file = 'examples/ross.mp4'
frames = load_frames_rgb(video_file) # simple wrapper to load video frames with opencv and convert to RGB, 0~255, UInt8, HWC
print(f'Loaded {len(frames)} frames')
print('image size:', frames[0].shape)
# it might take longer time to detect since is first time to run the model
all_faces = detector(frames, batch_size=batch_size, return_dict=True, threshold=threshold, resize=0.5)
head_poses = head_pose_estimator(all_faces, frames, batch_size=batch_size, update_dict=True, input_face_type='dict')
# the head pose will be updated in the all_faces dict
out_frames = []
for faces, frame in zip(all_faces, frames):
for face in faces:
head_pose_estimator.plot_pose_cube(frame, face['box'], **face['head_pose'])
out_frames.append(frame)
if vis:
import imageio
out_file = 'examples/head_pose.mp4'
imageio.mimsave(out_file, out_frames, fps=8)
check out the result video here
you can run the script python -m tests.video_head_pose
to see the result.
We wrap the FaRL model from facer and provide a simple API for batch face parsing.
If you want to use the face parsing model, you need to install the pyfacer>=0.0.5
package.
pip install pyfacer>=0.0.5 -U
import numpy as np
import cv2
from batch_face import RetinaFace, FarlParser, load_frames_rgb
gpu_id = 0
video_file = 'examples/ross.mp4'
retinaface = RetinaFace(gpu_id)
face_parser = FarlParser(gpu_id=gpu_id, name='farl/lapa/448') # you can choose different model from [farl/celebm/448, farl/lapa/448]
frames = load_frames_rgb(video_file)
all_faces = retinaface(frames, return_dict=True, threshold=0.95)
# optional, you can do some face filtering here, for example you can filter out
all_faces = face_parser(frames, all_faces)
label_names = face_parser.label_names
print(label_names)
for frame_i, (faces, frame) in enumerate(zip(all_faces, frames)):
for face_i, face in enumerate(faces):
seg_logits = face['seg_logits']
seg_preds = face['seg_preds']
vis_seg_preds = face_parser.color_lut[seg_preds]
# blend with input frame
frame = cv2.addWeighted(frame, 0.5, vis_seg_preds, 0.5, 0)
vis_frame = np.concatenate([vis_seg_preds, frame], axis=1)
cv2.imwrite(f'vis_{frame_i}_{face_i}.png', vis_frame[...,::-1])
check out the result images here
you can run the script python -m tests.parsing_on_video
to see the result.
FAQs
Batch Face Preprocessing for Modern Research
We found that batch-face demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Create React App is officially deprecated due to React 19 issues and lack of maintenance—developers should switch to Vite or other modern alternatives.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.