
Security News
NVD Quietly Sweeps 100K+ CVEs Into a “Deferred” Black Hole
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
:Author: The Blosc development team :Contact: blosc@blosc.org :Github: https://github.com/Blosc/python-blosc :URL: https://www.blosc.org/python-blosc/python-blosc.html :PyPi: |version| :Anaconda: |anaconda| :Gitter: |gitter| :Code of Conduct: |Contributor Covenant|
.. |version| image:: https://img.shields.io/pypi/v/blosc.png :target: https://pypi.python.org/pypi/blosc .. |anaconda| image:: https://anaconda.org/conda-forge/python-blosc/badges/version.svg :target: https://anaconda.org/conda-forge/python-blosc .. |gitter| image:: https://badges.gitter.im/Blosc/c-blosc.svg :target: https://gitter.im/Blosc/c-blosc .. |Contributor Covenant| image:: https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg :target: https://github.com/Blosc/community/blob/master/code_of_conduct.md
Blosc (https://blosc.org) is a high performance compressor optimized for binary data. It has been designed to transmit data to the processor cache faster than the traditional, non-compressed, direct memory fetch approach via a memcpy() OS call.
Blosc works well for compressing numerical arrays that contains data with relatively low entropy, like sparse data, time series, grids with regular-spaced values, etc.
python-blosc a Python package that wraps Blosc. python-blosc supports Python 3.9 or higher versions.
Blosc is now offering Python wheels for the main OS (Win, Mac and Linux) and platforms. You can install binary packages from PyPi using pip
:
.. code-block:: console
$ pip install blosc
The Sphinx based documentation is here:
https://blosc.org/python-blosc/python-blosc.html
Also, some examples are available on python-blosc wiki page:
https://github.com/blosc/python-blosc/wiki
Lastly, here is the recording <https://www.youtube.com/watch?v=rilU44j_wUU&list=PLNkWzv63CorW83NY3U93gUar645jTXpJF&index=15>
_
and the slides <https://www.blosc.org/docs/haenel-ep14-compress-me-stupid.pdf>
_ from the talk
"Compress me stupid" at the EuroPython 2014.
If you need more control, there are different ways to compile python-blosc, depending if you want to link with an already installed Blosc library or not.
python-blosc
comes with the Blosc sources with it and can be built with:
.. code-block:: console
$ python -m pip install -r requirements-dev.txt
$ python setup.py build_ext --inplace
Any codec can be enabled (=1
) or disabled (=0
) on this build-path with the appropriate
OS environment variables INCLUDE_LZ4
, INCLUDE_SNAPPY
, INCLUDE_ZLIB
, and
INCLUDE_ZSTD
. By default all the codecs in Blosc are enabled except Snappy
(due to some issues with C++ with the gcc
toolchain).
Compiler specific optimisations are automatically enabled by inspecting
the CPU flags building Blosc. They can be manually disabled by setting
the following environmental variables: DISABLE_BLOSC_SSE2
and
DISABLE_BLOSC_AVX2
.
setuptools
is limited to using the compiler specified in the environment
variable CC
which on posix systems is usually gcc
. This often causes
trouble with the Snappy codec, which is written in C++, and as a result Snappy
is no longer compiled by default. This problem is not known to affect MSVC or
clang. Snappy is considered optional in Blosc as its compression performance
is below that of the other codecs.
That's all. You can proceed with testing section now.
This approach uses pre-built, fully optimized versions of Blosc built via CMake.
Go to https://github.com/Blosc/c-blosc/releases and download and install the C-Blosc library. Then, you can tell python-blosc where is the C-Blosc library in a couple of ways:
Using an environment variable:
.. code-block:: console
$ export USE_SYSTEM_BLOSC=1 # or "set USE_SYSTEM_BLOSC=1" on Windows
$ export Blosc_ROOT=/usr/local/customprefix # If you installed Blosc into a custom location
$ python setup.py build_ext --inplace
Using flags:
.. code-block:: console
$ python setup.py build_ext --inplace -DUSE_SYSTEM_BLOSC:BOOL=YES -DBlosc_ROOT:PATH=/usr/local/customprefix
After compiling, you can quickly check that the package is sane by
running the doctests in blosc/test.py
:
.. code-block:: console
$ python -m blosc.test (add -v for verbose mode)
Once installed, you can re-run the tests at any time with:
.. code-block:: console
$ python -c "import blosc; blosc.test()"
If curious, you may want to run a small benchmark that compares a plain NumPy array copy against compression through different compressors in your Blosc build:
.. code-block:: console
$ PYTHONPATH=. python bench/compress_ptr.py
Just to whet your appetite, here are the results for an Intel Xeon E5-2695 v3 @ 2.30GHz, running Python 3.5, CentOS 7, but YMMV (and will vary!)::
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= python-blosc version: 1.5.1.dev0 Blosc version: 1.11.2 ($Date:: 2017-01-27 #$) Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'] Compressor library versions: BloscLZ: 1.0.5 LZ4: 1.7.5 Snappy: 1.1.1 Zlib: 1.2.7 Zstd: 1.1.2 Python version: 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:53:06) [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] Platform: Linux-3.10.0-327.18.2.el7.x86_64-x86_64 (#1 SMP Thu May 12 11:03:55 UTC 2016) Linux dist: CentOS Linux 7.2.1511 Processor: x86_64 Byte-ordering: little Detected cores: 56 Number of threads to use by default: 4 -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Creating NumPy arrays with 10**8 int64/float64 elements: *** ctypes.memmove() *** Time for memcpy(): 0.276 s (2.70 GB/s)
Times for compressing/decompressing with clevel=5 and 24 threads
*** the arange linear distribution *** *** blosclz , noshuffle *** 0.382 s (1.95 GB/s) / 0.300 s (2.48 GB/s) Compr. ratio: 1.0x *** blosclz , shuffle *** 0.042 s (17.77 GB/s) / 0.027 s (27.18 GB/s) Compr. ratio: 57.1x *** blosclz , bitshuffle *** 0.094 s (7.94 GB/s) / 0.041 s (18.28 GB/s) Compr. ratio: 74.0x *** lz4 , noshuffle *** 0.156 s (4.79 GB/s) / 0.052 s (14.30 GB/s) Compr. ratio: 2.0x *** lz4 , shuffle *** 0.033 s (22.58 GB/s) / 0.034 s (22.03 GB/s) Compr. ratio: 68.6x *** lz4 , bitshuffle *** 0.059 s (12.63 GB/s) / 0.053 s (14.18 GB/s) Compr. ratio: 33.1x *** lz4hc , noshuffle *** 0.443 s (1.68 GB/s) / 0.070 s (10.62 GB/s) Compr. ratio: 2.0x *** lz4hc , shuffle *** 0.102 s (7.31 GB/s) / 0.029 s (25.42 GB/s) Compr. ratio: 97.5x *** lz4hc , bitshuffle *** 0.206 s (3.62 GB/s) / 0.038 s (19.85 GB/s) Compr. ratio: 180.5x *** snappy , noshuffle *** 0.154 s (4.84 GB/s) / 0.056 s (13.28 GB/s) Compr. ratio: 2.0x *** snappy , shuffle *** 0.044 s (16.89 GB/s) / 0.047 s (15.95 GB/s) Compr. ratio: 17.4x *** snappy , bitshuffle *** 0.064 s (11.58 GB/s) / 0.061 s (12.26 GB/s) Compr. ratio: 18.2x *** zlib , noshuffle *** 1.172 s (0.64 GB/s) / 0.135 s (5.50 GB/s) Compr. ratio: 5.3x *** zlib , shuffle *** 0.260 s (2.86 GB/s) / 0.086 s (8.67 GB/s) Compr. ratio: 120.8x *** zlib , bitshuffle *** 0.262 s (2.84 GB/s) / 0.094 s (7.96 GB/s) Compr. ratio: 260.1x *** zstd , noshuffle *** 0.973 s (0.77 GB/s) / 0.093 s (8.00 GB/s) Compr. ratio: 7.8x *** zstd , shuffle *** 0.093 s (7.97 GB/s) / 0.023 s (32.71 GB/s) Compr. ratio: 156.7x *** zstd , bitshuffle *** 0.115 s (6.46 GB/s) / 0.029 s (25.60 GB/s) Compr. ratio: 320.6x
*** the linspace linear distribution *** *** blosclz , noshuffle *** 0.341 s (2.19 GB/s) / 0.291 s (2.56 GB/s) Compr. ratio: 1.0x *** blosclz , shuffle *** 0.132 s (5.65 GB/s) / 0.023 s (33.10 GB/s) Compr. ratio: 2.0x *** blosclz , bitshuffle *** 0.166 s (4.50 GB/s) / 0.036 s (20.89 GB/s) Compr. ratio: 2.8x *** lz4 , noshuffle *** 0.142 s (5.26 GB/s) / 0.028 s (27.07 GB/s) Compr. ratio: 1.0x *** lz4 , shuffle *** 0.093 s (8.01 GB/s) / 0.030 s (24.87 GB/s) Compr. ratio: 3.4x *** lz4 , bitshuffle *** 0.102 s (7.31 GB/s) / 0.039 s (19.13 GB/s) Compr. ratio: 5.3x *** lz4hc , noshuffle *** 0.700 s (1.06 GB/s) / 0.044 s (16.77 GB/s) Compr. ratio: 1.1x *** lz4hc , shuffle *** 0.203 s (3.67 GB/s) / 0.021 s (36.22 GB/s) Compr. ratio: 8.6x *** lz4hc , bitshuffle *** 0.342 s (2.18 GB/s) / 0.028 s (26.50 GB/s) Compr. ratio: 14.2x *** snappy , noshuffle *** 0.271 s (2.75 GB/s) / 0.274 s (2.72 GB/s) Compr. ratio: 1.0x *** snappy , shuffle *** 0.099 s (7.54 GB/s) / 0.042 s (17.55 GB/s) Compr. ratio: 4.2x *** snappy , bitshuffle *** 0.127 s (5.86 GB/s) / 0.043 s (17.20 GB/s) Compr. ratio: 6.1x *** zlib , noshuffle *** 1.525 s (0.49 GB/s) / 0.158 s (4.70 GB/s) Compr. ratio: 1.6x *** zlib , shuffle *** 0.346 s (2.15 GB/s) / 0.098 s (7.59 GB/s) Compr. ratio: 10.7x *** zlib , bitshuffle *** 0.420 s (1.78 GB/s) / 0.104 s (7.20 GB/s) Compr. ratio: 18.0x *** zstd , noshuffle *** 1.061 s (0.70 GB/s) / 0.096 s (7.79 GB/s) Compr. ratio: 1.9x *** zstd , shuffle *** 0.203 s (3.68 GB/s) / 0.052 s (14.21 GB/s) Compr. ratio: 14.2x *** zstd , bitshuffle *** 0.251 s (2.97 GB/s) / 0.047 s (15.84 GB/s) Compr. ratio: 22.2x
*** the random distribution *** *** blosclz , noshuffle *** 0.340 s (2.19 GB/s) / 0.285 s (2.61 GB/s) Compr. ratio: 1.0x *** blosclz , shuffle *** 0.091 s (8.21 GB/s) / 0.017 s (44.29 GB/s) Compr. ratio: 3.9x *** blosclz , bitshuffle *** 0.080 s (9.27 GB/s) / 0.029 s (26.12 GB/s) Compr. ratio: 6.1x *** lz4 , noshuffle *** 0.150 s (4.95 GB/s) / 0.027 s (28.05 GB/s) Compr. ratio: 2.4x *** lz4 , shuffle *** 0.068 s (11.02 GB/s) / 0.029 s (26.03 GB/s) Compr. ratio: 4.5x *** lz4 , bitshuffle *** 0.063 s (11.87 GB/s) / 0.054 s (13.70 GB/s) Compr. ratio: 6.2x *** lz4hc , noshuffle *** 0.645 s (1.15 GB/s) / 0.019 s (39.22 GB/s) Compr. ratio: 3.5x *** lz4hc , shuffle *** 0.257 s (2.90 GB/s) / 0.022 s (34.62 GB/s) Compr. ratio: 5.1x *** lz4hc , bitshuffle *** 0.128 s (5.80 GB/s) / 0.029 s (25.52 GB/s) Compr. ratio: 6.2x *** snappy , noshuffle *** 0.164 s (4.54 GB/s) / 0.048 s (15.46 GB/s) Compr. ratio: 2.2x *** snappy , shuffle *** 0.082 s (9.09 GB/s) / 0.043 s (17.39 GB/s) Compr. ratio: 4.3x *** snappy , bitshuffle *** 0.071 s (10.48 GB/s) / 0.046 s (16.08 GB/s) Compr. ratio: 5.0x *** zlib , noshuffle *** 1.223 s (0.61 GB/s) / 0.093 s (7.97 GB/s) Compr. ratio: 4.0x *** zlib , shuffle *** 0.636 s (1.17 GB/s) / 0.126 s (5.89 GB/s) Compr. ratio: 5.5x *** zlib , bitshuffle *** 0.327 s (2.28 GB/s) / 0.109 s (6.81 GB/s) Compr. ratio: 6.2x *** zstd , noshuffle *** 1.432 s (0.52 GB/s) / 0.103 s (7.27 GB/s) Compr. ratio: 4.2x *** zstd , shuffle *** 0.388 s (1.92 GB/s) / 0.031 s (23.71 GB/s) Compr. ratio: 5.9x *** zstd , bitshuffle *** 0.127 s (5.86 GB/s) / 0.033 s (22.77 GB/s) Compr. ratio: 6.4x
Also, Blosc works quite well on ARM processors (even without NEON support yet)::
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
python-blosc version: 1.4.4
Blosc version: 1.11.2 ($Date:: 2017-01-27 #$)
Compressors available: ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']
Compressor library versions:
BloscLZ: 1.0.5
LZ4: 1.7.5
Snappy: 1.1.1
Zlib: 1.2.8
Zstd: 1.1.2
Python version: 3.6.0 (default, Dec 31 2016, 21:20:16)
[GCC 4.9.2]
Platform: Linux-3.4.113-sun8i-armv7l (#50 SMP PREEMPT Mon Nov 14 08:41:55 CET 2016)
Linux dist: debian 9.0
Processor: not recognized
Byte-ordering: little
Detected cores: 4
Number of threads to use by default: 4
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
*** ctypes.memmove() *** Time for memcpy(): 0.015 s (93.57 MB/s)
Times for compressing/decompressing with clevel=5 and 4 threads
*** user input ***
*** blosclz , noshuffle *** 0.015 s (89.93 MB/s) / 0.010 s (138.32 MB/s) Compr. ratio: 2.7x
*** blosclz , shuffle *** 0.023 s (60.25 MB/s) / 0.012 s (112.71 MB/s) Compr. ratio: 2.3x
*** blosclz , bitshuffle *** 0.018 s (77.63 MB/s) / 0.021 s (66.76 MB/s) Compr. ratio: 7.3x
*** lz4 , noshuffle *** 0.008 s (177.14 MB/s) / 0.009 s (159.00 MB/s) Compr. ratio: 3.6x
*** lz4 , shuffle *** 0.010 s (131.29 MB/s) / 0.012 s (117.69 MB/s) Compr. ratio: 3.5x
*** lz4 , bitshuffle *** 0.015 s (89.97 MB/s) / 0.022 s (63.62 MB/s) Compr. ratio: 8.4x
*** lz4hc , noshuffle *** 0.071 s (19.30 MB/s) / 0.007 s (186.64 MB/s) Compr. ratio: 8.6x
*** lz4hc , shuffle *** 0.079 s (17.30 MB/s) / 0.014 s (95.99 MB/s) Compr. ratio: 6.2x
*** lz4hc , bitshuffle *** 0.062 s (22.23 MB/s) / 0.027 s (51.53 MB/s) Compr. ratio: 9.7x
*** snappy , noshuffle *** 0.008 s (173.87 MB/s) / 0.009 s (148.77 MB/s) Compr. ratio: 4.4x
*** snappy , shuffle *** 0.011 s (123.22 MB/s) / 0.016 s (85.16 MB/s) Compr. ratio: 4.4x
*** snappy , bitshuffle *** 0.015 s (89.02 MB/s) / 0.021 s (64.87 MB/s) Compr. ratio: 6.2x
*** zlib , noshuffle *** 0.047 s (29.26 MB/s) / 0.011 s (121.83 MB/s) Compr. ratio: 14.7x
*** zlib , shuffle *** 0.080 s (17.20 MB/s) / 0.022 s (63.61 MB/s) Compr. ratio: 9.4x
*** zlib , bitshuffle *** 0.059 s (23.50 MB/s) / 0.033 s (41.10 MB/s) Compr. ratio: 10.5x
*** zstd , noshuffle *** 0.113 s (12.21 MB/s) / 0.011 s (124.64 MB/s) Compr. ratio: 15.6x
*** zstd , shuffle *** 0.154 s (8.92 MB/s) / 0.026 s (52.56 MB/s) Compr. ratio: 9.9x
*** zstd , bitshuffle *** 0.116 s (11.86 MB/s) / 0.036 s (38.40 MB/s) Compr. ratio: 11.4x
For details on the ARM benchmark see: https://github.com/Blosc/python-blosc/issues/105
In case you find your own results interesting, please report them back to the authors!
The software is licensed under a 3-Clause BSD license. A copy of the
python-blosc license can be found in
LICENSE.txt <https://github.com/Blosc/python-blosc/blob/main/LICENSE.txt>
_.
Discussion about this module is welcome in the Blosc list:
https://groups.google.com/g/blosc
Enjoy data!
.. Local Variables: .. mode: rst .. coding: utf-8 .. fill-column: 72 .. End:
FAQs
Blosc data compressor
We found that blosc demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
NVD now marks all pre-2018 CVEs as "Deferred," signaling it will no longer enrich older vulnerabilities, further eroding trust in its data.
Research
Security News
Lazarus-linked threat actors expand their npm malware campaign with new RAT loaders, hex obfuscation, and over 5,600 downloads across 11 packages.
Security News
Safari 18.4 adds support for Iterator Helpers and two other TC39 JavaScript features, bringing full cross-browser coverage to key parts of the ECMAScript spec.