Socket
Book a DemoInstallSign in
Socket

box-ai-agents-toolkit

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

box-ai-agents-toolkit

A python library for building AI agents for Box

0.0.45
pipPyPI
Maintainers
1

Box AI Agents Toolkit

A Python library for building AI agents for Box. This toolkit provides functionalities for authenticating with Box using OAuth and CCG, interacting with Box files and folders, managing document generation operations, and handling metadata templates.

Features

  • Authentication: Authenticate with Box using OAuth or CCG.
  • Box API Interactions: Interact with Box files and folders.
  • File Upload & Download: Easily upload files to and download files from Box.
  • Folder Management: Create, update, delete, and list folder contents.
  • Search: Search for content and locate folders by name.
  • Document Generation (DocGen): Create and manage document generation jobs and templates.
  • Metadata Templates: Create and retrieve metadata templates by key, ID, or name.
  • Metadata Instances: Set, get, update, and delete metadata instances on files.
  • AI Capabilities:
    • Ask AI questions about single or multiple files
    • Ask AI questions about Box hubs
    • Extract information using freeform prompts
    • Extract structured information using fields or templates
    • Enhanced extraction capabilities with improved formatting

Installation

To install the toolkit, run:

pip install box-ai-agents-toolkit

Usage

Authentication

CCG Authentication

Create a .env file with:

BOX_CLIENT_ID = "your client id"
BOX_CLIENT_SECRET = "your client secret"
BOX_SUBJECT_TYPE = "user/enterprise"
BOX_SUBJECT_ID = "user id/enterprise id"

Then authenticate:

from box_ai_agents_toolkit import get_ccg_client

client = get_ccg_client()

OAuth Authentication

Create a .env file with:

BOX_CLIENT_ID = "your client id"
BOX_CLIENT_SECRET = "your client secret"
BOX_REDIRECT_URL = "http://localhost:8000/callback"

Then authenticate:

from box_ai_agents_toolkit import get_oauth_client

client = get_oauth_client()

Box API Interactions

Files and Folders

Get File by ID:

from box_ai_agents_toolkit import box_file_get_by_id

file = box_file_get_by_id(client, file_id="12345")

Extract Text from File:

from box_ai_agents_toolkit import box_file_text_extract

text = box_file_text_extract(client, file_id="12345")

List Folder Contents:

from box_ai_agents_toolkit import box_folder_list_content

contents = box_folder_list_content(client, folder_id="0")
print("Folder contents:", contents)

Create a Folder:

from box_ai_agents_toolkit import box_create_folder

folder = box_create_folder(client, name="New Folder", parent_id="0")
print("Created folder:", folder)

Update a Folder:

from box_ai_agents_toolkit import box_update_folder

updated_folder = box_update_folder(client, folder_id="12345", name="Updated Name", description="New description")
print("Updated folder:", updated_folder)

Delete a Folder:

from box_ai_agents_toolkit import box_delete_folder

box_delete_folder(client, folder_id="12345")
print("Folder deleted")

File Upload & Download

Upload a File:

from box_ai_agents_toolkit import box_upload_file

content = "This is a test file content."
result = box_upload_file(client, content, file_name="test_upload.txt", folder_id="0")
print("Uploaded File Info:", result)

Download a File:

from box_ai_agents_toolkit import box_file_download

path_saved, file_content, mime_type = box_file_download(client, file_id="12345", save_file=True)
print("File saved to:", path_saved)

Search for Content:

from box_ai_agents_toolkit import box_search

results = box_search(client, query="contract", limit=10, content_types=["name", "description"])
print("Search results:", results)

Locate Folder by Name:

from box_ai_agents_toolkit import box_locate_folder_by_name

folder = box_locate_folder_by_name(client, folder_name="Documents", parent_folder_id="0")
print("Found folder:", folder)

Document Generation (DocGen)

Mark a File as a DocGen Template:

from box_ai_agents_toolkit import box_docgen_template_create

template = box_docgen_template_create(client, file_id="template_file_id")
print("Created DocGen Template:", template)

List DocGen Templates:

from box_ai_agents_toolkit import box_docgen_template_list

templates = box_docgen_template_list(client, marker='x', limit=10)
print("DocGen Templates:", templates)

Delete a DocGen Template:

from box_ai_agents_toolkit import box_docgen_template_delete

box_docgen_template_delete(client, template_id="template_file_id")
print("Template deleted")

Retrieve a DocGen Template by ID:

from box_ai_agents_toolkit import box_docgen_template_get_by_id

template_details = box_docgen_template_get_by_id(client, template_id="template_file_id")
print("Template details:", template_details)

Retrieve a DocGen Template by Name:

from box_ai_agents_toolkit import box_docgen_template_get_by_name

template_details = box_docgen_template_get_by_name(client, template_name="My Template")
print("Template details:", template_details)

List Template Tags and Jobs:

from box_ai_agents_toolkit import box_docgen_template_list_tags, box_docgen_template_list_jobs

tags = box_docgen_template_list_tags(client, template_id="template_file_id", template_version_id='v1', marker='m', limit=5)
jobs = box_docgen_template_list_jobs(client, template_id="template_file_id", marker='m2', limit=3)
print("Template tags:", tags)
print("Template jobs:", jobs)

Create a Document Generation Batch:

from box_ai_agents_toolkit import box_docgen_create_batch

data_input = [
    {"generated_file_name": "file1", "user_input": {"a": "b"}},
    {"generated_file_name": "file2", "user_input": {"x": "y"}}
]
batch = box_docgen_create_batch(client, file_id="f1", input_source="api", destination_folder_id="dest", output_type="pdf", document_generation_data=data_input)
print("Batch job created:", batch)

Create Single Document from User Input:

from box_ai_agents_toolkit import box_docgen_create_single_file_from_user_input

result = box_docgen_create_single_file_from_user_input(
    client, 
    file_id="template_file_id", 
    destination_folder_id="dest_folder_id", 
    user_input='{"name": "John Doe", "date": "2024-01-01"}', 
    generated_file_name="Generated Document",
    output_type="pdf"
)
print("Single document created:", result)

Get DocGen Job by ID:

from box_ai_agents_toolkit import box_docgen_get_job_by_id

job = box_docgen_get_job_by_id(client, job_id="job123")
print("Job details:", job)

List DocGen Jobs:

from box_ai_agents_toolkit import box_docgen_list_jobs

jobs = box_docgen_list_jobs(client, marker="m", limit=10)
print("DocGen jobs:", jobs)

List Jobs by Batch:

from box_ai_agents_toolkit import box_docgen_list_jobs_by_batch

batch_jobs = box_docgen_list_jobs_by_batch(client, batch_id="batch123", marker="m", limit=5)
print("Batch jobs:", batch_jobs)

Metadata Templates

Create a Metadata Template:

from box_ai_agents_toolkit import box_metadata_template_create

template = box_metadata_template_create(
    client,
    scope="enterprise",
    display_name="My Template",
    template_key="tmpl1",
    hidden=True,
    fields=[{"key": "a", "type": "string"}],
    copy_instance_on_item_copy=False,
)
print("Created Metadata Template:", template)

Retrieve a Metadata Template by Key:

from box_ai_agents_toolkit import box_metadata_template_get_by_key

template = box_metadata_template_get_by_key(client, scope="enterprise", template_key="tmpl1")
print("Metadata Template Details:", template)

Retrieve a Metadata Template by ID:

from box_ai_agents_toolkit import box_metadata_template_get_by_id

template = box_metadata_template_get_by_id(client, template_id="12345")
print("Metadata Template Details:", template)

Retrieve a Metadata Template by Name:

from box_ai_agents_toolkit import box_metadata_template_get_by_name

template = box_metadata_template_get_by_name(client, template_name="My Template", scope="enterprise")
print("Metadata Template Details:", template)

Metadata Instances on Files

Set Metadata Instance on File:

from box_ai_agents_toolkit import box_metadata_set_instance_on_file

metadata = {"field1": "value1", "field2": "value2"}
result = box_metadata_set_instance_on_file(
    client, 
    file_id="12345", 
    scope="enterprise", 
    template_key="tmpl1", 
    metadata=metadata
)
print("Metadata set:", result)

Get Metadata Instance on File:

from box_ai_agents_toolkit import box_metadata_get_instance_on_file

metadata = box_metadata_get_instance_on_file(
    client, 
    file_id="12345", 
    scope="enterprise", 
    template_key="tmpl1"
)
print("File metadata:", metadata)

Update Metadata Instance on File:

from box_ai_agents_toolkit import box_metadata_update_instance_on_file

updates = [
    {"op": "replace", "path": "/field1", "value": "new_value1"},
    {"op": "add", "path": "/field3", "value": "value3"}
]
result = box_metadata_update_instance_on_file(
    client, 
    file_id="12345", 
    scope="enterprise", 
    template_key="tmpl1", 
    request_body=updates
)
print("Metadata updated:", result)

Delete Metadata Instance on File:

from box_ai_agents_toolkit import box_metadata_delete_instance_on_file

box_metadata_delete_instance_on_file(
    client, 
    file_id="12345", 
    scope="enterprise", 
    template_key="tmpl1"
)
print("Metadata instance deleted")

AI Capabilities

Ask AI a Question about a Single File:

from box_ai_agents_toolkit import box_ai_ask_file_single

response = box_ai_ask_file_single(client, file_id="12345", prompt="What is this file about?")
print("AI Response:", response)

Ask AI a Question about Multiple Files:

from box_ai_agents_toolkit import box_ai_ask_file_multi

file_ids = ["12345", "67890"]
response = box_ai_ask_file_multi(client, file_ids=file_ids, prompt="Compare these files")
print("AI Response:", response)

Ask AI a Question about a Box Hub:

from box_ai_agents_toolkit import box_ai_ask_hub

response = box_ai_ask_hub(client, hubs_id="12345", prompt="What is the current policy on parental leave?")
print("AI Response:", response)

Extract Information from Files using AI (Freeform):

from box_ai_agents_toolkit import box_ai_extract_freeform

response = box_ai_extract_freeform(client, file_id="12345", prompt="Extract date, name, and contract number from this file.")
print("AI Extract Response:", response)

Extract Structured Information using Fields:

from box_ai_agents_toolkit import box_ai_extract_structured_using_fields

fields = [
    {"key": "contract_date", "type": "date", "description": "The contract signing date"},
    {"key": "parties", "type": "array", "description": "Names of contracting parties"}
]
response = box_ai_extract_structured_using_fields(client, file_id="12345", fields=fields)
print("Structured Extract Response:", response)

Extract Enhanced Structured Information using Fields:

from box_ai_agents_toolkit import box_ai_extract_structured_enhanced_using_fields

fields = [
    {"key": "contract_date", "type": "date", "description": "The contract signing date"},
    {"key": "parties", "type": "array", "description": "Names of contracting parties"}
]
response = box_ai_extract_structured_enhanced_using_fields(client, file_id="12345", fields=fields)
print("Enhanced Structured Extract Response:", response)

Extract Structured Information using Template:

from box_ai_agents_toolkit import box_ai_extract_structured_using_template

response = box_ai_extract_structured_using_template(client, file_id="12345", template_key="contract_template")
print("Template-based Extract Response:", response)

Extract Enhanced Structured Information using Template:

from box_ai_agents_toolkit import box_ai_extract_structured_enhanced_using_template

response = box_ai_extract_structured_enhanced_using_template(client, file_id="12345", template_key="contract_template")
print("Enhanced Template-based Extract Response:", response)

Development

Setting Up

  • Clone the repository:

    git clone https://github.com/box-community/box-ai-agents-toolkit.git
    cd box-ai-agents-toolkit
    
  • Install dependencies:

    pip install -e .[dev]
    

Running Tests

To run the tests, use:

pytest

Linting and Code Quality

To run the linter:

ruff check

To format code:

ruff format

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contributing

Contributions are welcome! Please open an issue or submit a pull request for any enhancements or bug fixes.

Contact

For questions or issues, open an issue on the GitHub repository.

Keywords

agent

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.