Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

brain-loop-search

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

brain-loop-search

Screen loops among brain structures(or any entities comprising a graph).

  • 0.1.7
  • PyPI
  • Socket score

Maintainers
1

Tools for screening significant loop structures in a graph, typically a brain structure graph with physiological or anatomical edge data.

Installation

$ pip install brain-loop-search

Usage

Packing a bigger graph for regions of interest

Packing vertices:

import brain_loop_search as bls

vertices = [322, 329, 981, 337, 453, 8, 1070] # ccf brain id

# ccf ontology
ontology = bls.brain_utils.CCFv3Ontology()

vp = bls.packing.VertexPacker(vertices, ontology)
# filtering by level
vp.filter_by_level(fro=1, to=2)

Packing a graph:

import brain_loop_search as bls
import pandas as pd
import numpy as np

vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361] # ccf brain id

# adjacent matrix
adj_mat = pd.DataFrame(np.array([
            [0, 1, 1, 0, 0, 0, 1, 1, 0],
            [0, 0, 1, 1, 1, 1, 0, 1, 0],
            [0, 0, 0, 0, 1, 1, 1, 1, 1],
            [0, 0, 1, 0, 0, 1, 0, 1, 0],
            [1, 0, 1, 0, 0, 1, 0, 1, 0],
            [0, 1, 1, 1, 1, 1, 0, 1, 0],
            [0, 0, 0, 0, 0, 1, 0, 0, 1],
            [1, 0, 0, 0, 0, 1, 1, 1, 0],
            [1, 1, 1, 0, 0, 1, 0, 1, 1]
        ]), index=vertices, columns=vertices)

# ccf ontology
ontology = bls.brain_utils.CCFv3Ontology()

# packing
new_rows = [322]
new_cols = [337, 329, 353]
graph_packer = bls.packing.GraphPacker(adj_mat, ontology)
new_mat = graph_packer.pack(new_rows, new_cols, def_val=0, superior_as_complement=True, aggr_func=np.sum)

Screen simple loops from the graph.

import brain_loop_search as bls
import pandas as pd

edges = pd.DataFrame({
            "a": [1, 2, 3, 4, 5],
            "b": [4, -1, -1, 1, -1],
            "c": [5, 6, 7, 8, 9],
            "d": [-1, 2, 3, 1, 2],
            "e": [-1, -1, -1, -1, -1]
        }, index=["a", "b", "c", "d", "e"])

g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)

# search by single shortest path with a reverse edge
loops = g.pair_complement(axis_pool=['a', 'b', 'c'])
# search by chaining 3 of the shortest paths found
loops, sssp = g.chain_screen(n_axis=3)

Generate a new graph of potentially integrated loops.

import brain_loop_search as bls
import pandas as pd

edges = pd.DataFrame({
            "a": [1, 2, 3, 4, 5],
            "b": [4, -1, -1, 1, -1],
            "c": [5, 6, 7, 8, 9],
            "d": [-1, 2, 3, 1, 2],
            "e": [-1, -1, -1, -1, -1]
        }, index=["a", "b", "c", "d", "e"])

g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)

# find a single max flow with a reverse edge (like a magnet field)
new_g = g.magnet_flow(s='b', t='a')
# find cycled max flows and merge them into a new graph
new_g = g.merged_cycle_flow(axes=['b', 'c', 'a'])

Visualization

Visualize a single loop

import brain_loop_search as bls

# a loop is a list of list, with the head and tail of the sublist as axes
# here are some random picked brain regions
loop = [[950, 974, 417], [417, 993], [993, 234, 289, 950]]
bls.brain_utils.draw_single_loop(loop, 'test.png')

Figure:

Visualize a graph

import numpy as np
import pandas as pd
import brain_loop_search as bls
vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361]
adj_mat = pd.DataFrame(np.array([
    [0, 2, 1, 0, 0, 0, 1, 8, 0],
    [0, 0, 3, 1, 5, 1, 0, 5, 0],
    [0, 0, 0, 0, 1, 3, 2, 1, 2],
    [0, 0, 6, 0, 0, 1, 0, 4, 0],
    [1, 0, 1, 0, 0, 1, 0, 4, 0],
    [0, 1, 7, 1, 4, 1, 0, 1, 0],
    [0, 0, 0, 0, 0, 1, 0, 0, 1],
    [1, 0, 0, 0, 0, 2, 2, 1, 0],
    [1, 2, 2, 0, 0, 1, 0, 1, 1]
]), index=vertices, columns=vertices)
g = bls.search.GraphMaintainer()
g.add_subgraph(adj_mat)
bls.brain_utils.draw_brain_graph(g.graph, 'test2.png', thr=3)

Figure:

Github project: https://github.com/SEU-ALLEN-codebase/brain-loop-search

Documentation: https://SEU-ALLEN-codebase.github.io/brain-loop-search

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc