Brain Loop Search
Tools for screening significant loop structures in a graph, typically a
brain structure graph with physiological or anatomical edge data.
Installation
$ pip install brain-loop-search
Usage
Packing a bigger graph for regions of interest
Packing vertices:
import brain_loop_search as bls
vertices = [322, 329, 981, 337, 453, 8, 1070]
ontology = bls.brain_utils.CCFv3Ontology()
vp = bls.packing.VertexPacker(vertices, ontology)
vp.filter_by_level(fro=1, to=2)
Packing a graph:
import brain_loop_search as bls
import pandas as pd
import numpy as np
vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361]
adj_mat = pd.DataFrame(np.array([
[0, 1, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 0, 1, 0],
[0, 0, 0, 0, 1, 1, 1, 1, 1],
[0, 0, 1, 0, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 0, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1],
[1, 0, 0, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 0, 0, 1, 0, 1, 1]
]), index=vertices, columns=vertices)
ontology = bls.brain_utils.CCFv3Ontology()
new_rows = [322]
new_cols = [337, 329, 353]
graph_packer = bls.packing.GraphPacker(adj_mat, ontology)
new_mat = graph_packer.pack(new_rows, new_cols, def_val=0, superior_as_complement=True, aggr_func=np.sum)
Shortest Path Loop Search
Screen simple loops from the graph.
import brain_loop_search as bls
import pandas as pd
edges = pd.DataFrame({
"a": [1, 2, 3, 4, 5],
"b": [4, -1, -1, 1, -1],
"c": [5, 6, 7, 8, 9],
"d": [-1, 2, 3, 1, 2],
"e": [-1, -1, -1, -1, -1]
}, index=["a", "b", "c", "d", "e"])
g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)
loops = g.pair_complement(axis_pool=['a', 'b', 'c'])
loops, sssp = g.chain_screen(n_axis=3)
Max Flow Loop Search
Generate a new graph of potentially integrated loops.
import brain_loop_search as bls
import pandas as pd
edges = pd.DataFrame({
"a": [1, 2, 3, 4, 5],
"b": [4, -1, -1, 1, -1],
"c": [5, 6, 7, 8, 9],
"d": [-1, 2, 3, 1, 2],
"e": [-1, -1, -1, -1, -1]
}, index=["a", "b", "c", "d", "e"])
g = bls.search.ShortestPathLoopSearch()
g.add_subgraph(edges)
new_g = g.magnet_flow(s='b', t='a')
new_g = g.merged_cycle_flow(axes=['b', 'c', 'a'])
Visualization
Visualize a single loop
import brain_loop_search as bls
loop = [[950, 974, 417], [417, 993], [993, 234, 289, 950]]
bls.brain_utils.draw_single_loop(loop, 'test.png')
Figure:
Visualize a graph
import numpy as np
import pandas as pd
import brain_loop_search as bls
vertices = [322, 329, 981, 337, 453, 1070, 345, 353, 361]
adj_mat = pd.DataFrame(np.array([
[0, 2, 1, 0, 0, 0, 1, 8, 0],
[0, 0, 3, 1, 5, 1, 0, 5, 0],
[0, 0, 0, 0, 1, 3, 2, 1, 2],
[0, 0, 6, 0, 0, 1, 0, 4, 0],
[1, 0, 1, 0, 0, 1, 0, 4, 0],
[0, 1, 7, 1, 4, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 1],
[1, 0, 0, 0, 0, 2, 2, 1, 0],
[1, 2, 2, 0, 0, 1, 0, 1, 1]
]), index=vertices, columns=vertices)
g = bls.search.GraphMaintainer()
g.add_subgraph(adj_mat)
bls.brain_utils.draw_brain_graph(g.graph, 'test2.png', thr=3)
Figure:
Useful Links
Github project: https://github.com/SEU-ALLEN-codebase/brain-loop-search
Documentation: https://SEU-ALLEN-codebase.github.io/brain-loop-search