
Research
Security News
The Growing Risk of Malicious Browser Extensions
Socket researchers uncover how browser extensions in trusted stores are used to hijack sessions, redirect traffic, and manipulate user behavior.
This is heavily inspired by Pyramid
_ and my daily needs to fastly create and
maintain microservice like applications.
plugin may depend on other plugins
plugins yield tasks to run
a context registry serves as a store for application components created by plugins
a dependency injection creates intermediate components
a config source is mapped to plugin specific configuration and may be fully overridden by environment vars
structlog boilerplate for json/tty logging
fork the process and share bound sockets
pytest fixtures to reduce testing boilerplate
You bootstrap like following:
.. code-block:: python
from buvar import plugin
plugin.stage("some.module.with.prepare")
.. code-block:: python
from buvar import context, plugin
class Foo: ...
async def task(): asyncio.sleep(1)
async def server(): my_component = context.get(Foo) await asyncio.Future()
async def prepare(load: plugin.Loader): await load('.another.plugin')
# create some long lasting components
my_component = context.add(Foo())
# you may run simple tasks
yield task()
# you may run server tasks
yield server()
Dependency injection relies on registered adapters, which may be a function, a method, a class, a classmethod or a generic classmthod.
Dependencies are looked up in components or may be provided via kwargs.
.. code-block:: python
from buvar import di
class Bar: pass
class Foo: def init(self, bar: Bar = None): self.bar = bar
@classmethod
async def adapt(cls, baz: str) -> Foo:
return Foo()
async def adapt(bar: Bar) -> Foo foo = Foo(bar) return foo
async def task(): foo = await di.nject(Foo, baz="baz") assert foo.bar is None
bar = Bar()
foo = await di.nject(Foo, bar=bar)
assert foo.bar is bar
async def prepare(): di.register(Foo.adapt) di.register(adapt)
yield task()
:code:buvar.config.ConfigSource
is just a :code:dict
, which merges
arbitrary dicts into one. It serves as the single source of truth for
application variability.
You can load a section of config values into your custom attrs
_ class instance. ConfigSource will override values by environment variables if present.
config.toml
.. code-block:: toml
log_level = "DEBUG" show_warnings = "yes"
[foobar] some = "value"
.. code-block:: bash
export APP_FOOBAR_SOME=thing
.. code-block:: python
import attr import toml
from buvar import config
@attr.s(auto_attribs=True) class GeneralConfig: log_level: str = "INFO" show_warnings: bool = config.bool_var(False)
@attr.s(auto_attribs=True) class FoobarConfig: some: str
source = config.ConfigSource(toml.load('config.toml'), env_prefix="APP")
general_config = source.load(GeneralConfig) assert general_config == GeneralConfig(log_level="DEBUG", show_warnings=True)
foobar_config = source.load(FoobarConfig, 'foobar') assert foobar_config.some == "thing"
There is a shortcut to the above approach provided by
:code:buvar.config.Config
, which requires to be subclassed from it with a
distinct :code:section
attribute. If one adds a :code:buvar.config.ConfigSource
component, he will receive the mapped config in one call.
.. code-block:: python
from buvar import config, plugin
@attr.s(auto_attribs=True) class GeneralConfig(config.Config): log_level: str = "INFO" show_warnings: bool = config.bool_var(False)
@attr.s(auto_attribs=True) class FoobarConfig(config.Config, section="foobar"): some: str
async def prepare(load: plugin.Loader): # this would by typically placed in the main CLI entry point source = context.add(config.ConfigSource(toml.load('config.toml'), env_prefix="APP"))
# to provide the adapter to di, which could also be done in the main entry point
await load(config)
foobar_config = await di.nject(FoobarConfig)
Just structlog
_ boilerplate.
.. code-block:: python
import sys
from buvar import log
log_config = log.LogConfig(tty=sys.stdout.isatty(), level="DEBUG") log_config.setup()
You may fork your process and bind and share sockets, to leverage available CPUs e.g. for serving an aiohttp microservice.
Signals like INT, TERM, HUP are forwarded to the child processes.
.. code-block:: python
import aiohttp.web
from buvar import fork, plugin, di, context
from buvar_aiohttp import AioHttpConfig
async def hello(request):
return aiohttp.web.Response(body=b"Hello, world")
async def prepare_aiohttp(load: plugin.Loader):
await load("buvar_aiohttp")
app = await di.nject(aiohttp.web.Application)
app.router.add_route("GET", "/", hello)
context.add(AioHttpConfig(host="0.0.0.0", port=5678))
fork.stage(prepare_aiohttp, forks=0, sockets=["tcp://:5678"])
There are a couple of pytest fixtures provided to get your context into a reasonable state:
:code:buvar_config_source
A :code:dict
with arbitrary application settings.
:code:buvar_context
The basic context staging operates on.
:code:buvar_stage
The actual stage processing all plugins.
:code:buvar_load
The loader to add plugins to the stage.
:code:buvar_plugin_context
The context all plugins share, when they are prepared.
Following markers may be applied to a test
:code:buvar_plugins(plugin, ...)
Load all plugins into plugin context.
.. code-block:: python
import pytest
async def prepare():
from buvar import context
context.add("foobar")
@pytest.mark.asyncio
@pytest.mark.buvar_plugins("tests.test_testing")
async def test_wrapped_stage_context():
from buvar import context, plugin
assert context.get(str) == "foobar"
assert context.get(plugin.Cancel)
@pytest.mark.asyncio
@pytest.mark.buvar_plugins()
async def test_wrapped_stage_context_load(buvar_load):
from buvar import context, plugin
await buvar_load(prepare)
assert context.get(str) == "foobar"
assert context.get(plugin.Cancel)
.. _Pyramid: https://github.com/Pylons/pyramid .. _structlog: https://www.structlog.org/en/stable/ .. _attrs: https://www.attrs.org/en/stable/
FAQs
Asyncio plugins, components, dependency injection and configs
We found that buvar demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover how browser extensions in trusted stores are used to hijack sessions, redirect traffic, and manipulate user behavior.
Research
Security News
An in-depth analysis of credential stealers, crypto drainers, cryptojackers, and clipboard hijackers abusing open source package registries to compromise Web3 development environments.
Security News
pnpm 10.12.1 introduces a global virtual store for faster installs and new options for managing dependencies with version catalogs.