
Security Fundamentals
Turtles, Clams, and Cyber Threat Actors: Shell Usage
The Socket Threat Research Team uncovers how threat actors weaponize shell techniques across npm, PyPI, and Go ecosystems to maintain persistence and exfiltrate data.
Edit distance, Similarity and 2 sequence differences printing.
pip install cdiffer
Compute absolute Levenshtein distance of two strings.
dist(sequence, sequence)
Help on built-in function dist in module cdiffer:
dist(...)
Compute absolute Levenshtein distance of two strings.
dist(sequence, sequence)
Examples (it's hard to spell Levenshtein correctly):
>>> dist('coffee', 'cafe')
4
>>> dist(list('coffee'), list('cafe'))
4
>>> dist(tuple('coffee'), tuple('cafe'))
4
>>> dist(iter('coffee'), iter('cafe'))
4
>>> dist(range(4), range(5))
1
>>> dist('coffee', 'xxxxxx')
12
>>> dist('coffee', 'coffee')
0
Compute similarity of two strings.
similar(sequence, sequence)
The similarity is a number between 0 and 1, base on levenshtein edit distance.
>>> from cdiffer import similar
>>>
>>> similar('coffee', 'cafe')
0.6
>>> similar('hoge', 'bar')
0.0
Find sequence of edit operations transforming one string to another.
differ(source_sequence, destination_sequence, diffonly=False, rep_rate=60)
>>> from cdiffer import differ
>>>
>>> for x in differ('coffee', 'cafe'):
... print(x)
...
['equal', 0, 0, 'c', 'c']
['delete', 1, None,'o',None]
['insert', None, 1,None,'a']
['equal', 2, 2, 'f', 'f']
['delete', 3, None,'f',None]
['delete', 4, None,'e',None]
['equal', 5, 3, 'e', 'e']
>>> for x in differ('coffee', 'cafe', diffonly=True):
... print(x)
...
['delete', 1, None,'o',None]
['insert', None, 1,None,'a']
['delete', 3, None,'f',None]
['delete', 4, None,'e',None]
>>> for x in differ('coffee', 'cafe', rep_rate = 0):
... print(x)
...
['equal', 0, 0, 'c', 'c']
['replace', 1, 1, 'o', 'a']
['equal', 2, 2, 'f', 'f']
['delete', 3, None,'f',None]
['delete', 4, None,'e',None]
['equal', 5, 3, 'e', 'e']
>>> for x in differ('coffee', 'cafe', diffonly=True, rep_rate = 0):
... print(x)
...
['replace', 1, 1, 'o', 'a']
['delete', 3, None,'f',None]
['delete', 4, None,'e',None]
This Function is compare and prety printing 2 sequence data.
compare(source_sequence, destination_sequence, diffonly=False, rep_rate=60, condition_value=" ---> ")
arg1 -> iterable : left comare target data.
arg2 -> iterable : right comare target data.
keya -> callable one argument function : Using sort and compare with key about `a` object.
keyb -> callable one argument function : Using sort and compare with key about `a` object.
header -> bool : output data with header(True) or without header(False). <default True>
diffonly -> bool : output data with equal data(False) or without equal data(True). <default False>
rep_rate -> int: Threshold to be considered as replacement.(-1 ~ 100). -1: allways replacement.
startidx -> int: output record index starting number. <default `0`>
condition_value -> str : Conjunctions for comparison.
na_value -> str: if not found data when filled value.
delete_sign_value -> str: if deleted data when adding sign value.
insert_sign_value -> str: if insert data when adding sign value.
1st column -> matching rate (0 ~ 100).
2nd column -> matching tagname (unicode string).
3rd over -> compare data.
In [1]: from cdiffer import compare
... compare('coffee', 'cafe')
[['tag', 'index_a', 'index_b', 'data'],
['equal', 0, 0, 'c'],
['insert', '-', 1, 'ADD ---> a'],
['delete', 1, '-', 'o ---> DEL'],
['equal', 2, 2, 'f'],
['delete', 3, '-', 'f ---> DEL'],
['equal', 4, 3, 'e'],
['delete', 5, '-', 'e ---> DEL']]
In [2]: compare([list("abc"), list("abc")], [list("abc"), list("acc"), list("xtz")], rep_rate=50)
[['tag', 'index_a', 'index_b', 'COL_00', 'COL_01', 'COL_02', 'COL_03'],
['equal', 0, 0, 'a', 'b', 'c'],
['replace', 1, 1, 'a', 'b ---> DEL', 'ADD ---> c', 'c'],
['insert', '-', 2, 'ADD ---> x', 'ADD ---> t', 'ADD ---> z']]
In [3]: compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=40)
[['tag', 'index_a', 'index_b', 'data'],
['equal', 0, 0, 'abc'],
['replace', 1, 1, 'abc ---> acc'],
['insert', '-', 2, 'ADD ---> xtz']]
In [4]: compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=50)
[['tag', 'index_a', 'index_b', 'data'],
['equal', 0, 0, 'abc'],
['replace', 1, 1, 'abc ---> acc'],
['insert', '-', 2, 'ADD ---> xtz']]
C:\Windows\system>ipython
Python 3.7.7 (tags/v3.7.7:d7c567b08f, Mar 10 2020, 10:41:24) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: from cdiffer import *
In [2]: %timeit dist('coffee', 'cafe')
...: %timeit dist(list('coffee'), list('cafe'))
...: %timeit dist(tuple('coffee'), tuple('cafe'))
...: %timeit dist(iter('coffee'), iter('cafe'))
...: %timeit dist(range(4), range(5))
...: %timeit dist('coffee', 'xxxxxx')
...: %timeit dist('coffee', 'coffee')
125 ns ± 0.534 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
677 ns ± 2.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
681 ns ± 2.16 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
843 ns ± 3.66 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
125 ns ± 0.417 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
50.5 ns ± 0.338 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
In [3]: %timeit similar('coffee', 'cafe')
...: %timeit similar(list('coffee'), list('cafe'))
...: %timeit similar(tuple('coffee'), tuple('cafe'))
...: %timeit similar(iter('coffee'), iter('cafe'))
...: %timeit similar(range(4), range(5))
...: %timeit similar('coffee', 'xxxxxx')
...: %timeit similar('coffee', 'coffee')
123 ns ± 0.301 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
680 ns ± 2.64 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
647 ns ± 1.78 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
680 ns ± 7.57 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
848 ns ± 4.19 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
130 ns ± 0.595 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
54.8 ns ± 0.691 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
In [4]: %timeit differ('coffee', 'cafe')
...: %timeit differ(list('coffee'), list('cafe'))
...: %timeit differ(tuple('coffee'), tuple('cafe'))
...: %timeit differ(iter('coffee'), iter('cafe'))
...: %timeit differ(range(4), range(5))
...: %timeit differ('coffee', 'xxxxxx')
...: %timeit differ('coffee', 'coffee')
735 ns ± 4.18 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.36 µs ± 5.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.31 µs ± 5.25 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.37 µs ± 5.04 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.33 µs ± 5.32 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 6.75 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
638 ns ± 3.67 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [5]: a = dict(zip('012345', 'coffee'))
...: b = dict(zip('0123', 'cafe'))
...: %timeit dist(a, b)
...: %timeit similar(a, b)
...: %timeit differ(a, b)
524 ns ± 2.6 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
539 ns ± 2.23 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.07 µs ± 1.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [6]: %timeit compare("coffee", "cafe")
...: %timeit compare([list("abc"), list("abc")], [list("abc"), list("acc"), list("xtz")], rep_rate=50)
...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=40)
...: %timeit compare(["abc", "abc"], ["abc", "acc", "xtz"], rep_rate=50)
844 ns ± 3.88 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
3.32 µs ± 6.92 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
1.16 µs ± 3.94 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.3 µs ± 31.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
FAQs
Edit distance, Similarity and 2 sequence differences printing
We found that cdiffer demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security Fundamentals
The Socket Threat Research Team uncovers how threat actors weaponize shell techniques across npm, PyPI, and Go ecosystems to maintain persistence and exfiltrate data.
Security News
At VulnCon 2025, NIST scrapped its NVD consortium plans, admitted it can't keep up with CVEs, and outlined automation efforts amid a mounting backlog.
Product
We redesigned our GitHub PR comments to deliver clear, actionable security insights without adding noise to your workflow.