
Research
PyPI Package Disguised as Instagram Growth Tool Harvests User Credentials
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
A zero-dependency python package that prints basic charts to a Jupyter output
Charts supported:
Bar graphs can be drawn quickly with the bar
function:
from chart import bar
x = [500, 200, 900, 400]
y = ['marc', 'mummify', 'chart', 'sausagelink']
bar(x, y)
marc: βββββββββββββββββ
mummify: βββββββ
chart: ββββββββββββββββββββββββββββββ
sausagelink: βββββββββββββ
And the bar
function can accept columns from a pd.DataFrame
:
from chart import bar
import pandas as pd
df = pd.DataFrame({
'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'],
'listens': [8_456_831, 18_185_245, 2_556_448]
})
bar(df.listens, df.artist, width=20, label_width=11, mark='π')
Tame Impala: πππππππππ
Childish Ga: ππππππππππππππππππππ
The Knocks: πππ
Histograms are just as easy:
from chart import histogram
x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2]
histogram(x)
β
β
β
β
β β
β β
β β
β β β
β β β
β β β β
And they can accept objects created by scipy
:
from chart import histogram
import scipy.stats as stats
import numpy as np
np.random.seed(14)
n = stats.norm(loc=0, scale=10)
histogram(n.rvs(100), bins=14, height=7, mark='π')
π
π π
π π π
π π π
π π π π
π π π π π π π π π
π π π π π π π π π π
Scatter plots can be drawn with a simple scatter
call:
from chart import scatter
x = range(0, 20)
y = range(0, 20)
scatter(x, y)
β’
β’ β’
β’
β’ β’
β’ β’
β’
β’ β’
β’
β’ β’
β’ β’
β’
β’ β’
β’
And at this point you gotta know it works with any np.array
:
from chart import scatter
import numpy as np
np.random.seed(1)
N = 100
x = np.random.normal(100, 50, size=N)
y = x * -2 + 25 + np.random.normal(0, 25, size=N)
scatter(x, y, width=20, height=9, mark='^')
^^
^
^^^
^^^^^^^
^^^^^^
^^^^^^^
^^^^
^^^^^ ^
^^ ^
In fact, all chart
functions work with pandas, numpy, scipy and regular python objects.
In order to create the simple outputs generated by bar
, histogram
, and scatter
I had to create a couple of preprocessors, namely: NumberBinarizer
and RangeScaler
.
I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use chart
here they are for your tinkering:
from chart.preprocessing import NumberBinarizer
nb = NumberBinarizer(bins=4)
x = range(10)
nb.fit(x)
nb.transform(x)
[0, 0, 0, 1, 1, 2, 2, 3, 3, 3]
from chart.preprocessing import RangeScaler
rs = RangeScaler(out_range=(0, 10), round=False)
x = range(50, 59)
rs.fit_transform(x)
[0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0]
pip install chart
For feature requests or bug reports, please use Github Issues
I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of termgraph, it didn't really fit well or integrate with my Jupyter workflow. Here's to chart
π₯ (still can't believe I got it on PyPI)
FAQs
chart
We found that chart demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.Β It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.
Security News
Research
Socket uncovered two npm packages that register hidden HTTP endpoints to delete all files on command.