🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more

chartengineer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

chartengineer

Plotly and Pandas wrapper for quick and modern chart building.

0.1.2
Maintainers
1

chartengineer Documentation

chartengineer is a lightweight Python package for building publication-ready, highly customizable Plotly charts from pandas DataFrames.

It supports a flexible API for pie charts, grouped bar charts, heatmaps, time series, and area/line plots, with robust formatting, annotations, and layout tools.

Installation

pip install chartengineer

Or install from source:

git clone https://github.com/BrandynHamilton/chartengineer
cd chartengineer
pip install -e .

Quickstart

from chartengineer import ChartMaker

cm = ChartMaker(shuffle_colors=True)
cm.build(
    df=my_df,
    groupby_col="CHAIN",
    num_col="TOTAL_VOLUME",
    title="Bridge Volume by Chain",
    chart_type="pie",
    options={
        "tickprefix": {"y1": "$"},
        "annotations": True,
        "texttemplate": "%{label}<br>%{percent}"
    }
)
cm.add_title(subtitle="As of 2025-04-01")
cm.show_fig()

Supported Chart Types

  • "line" (default)
  • "bar"
  • "area"
  • "pie"
  • "heatmap"

You can use a string or dictionary:

chart_type = "bar"  # applies to both y1/y2
chart_type = {"y1": "line", "y2": "bar"}  # axis-specific

Check the tests directory for examples for each chart type.

Main Methods

ChartMaker.build(...)

Build a chart.

Arguments

  • df: pandas DataFrame
  • title: Chart title
  • chart_type: string or dict
  • groupby_col, num_col: for grouped series or pie/bar
  • axes_data: e.g. {"x": "DATE", "y1": ["TVL"]}
  • options: plot style and behavior options

ChartMaker.show_fig()

Render the current chart inline (Jupyter) or open in browser.

ChartMaker.save_fig(path, filetype='png')

Save the chart as .png, .svg, or .html.

ChartMaker.add_title(title, subtitle, x, y)

Adds a title to the chart itself, if title is None it defaults to the title name used in the build function. The X and Y parameters control the title's placement on the chart.

ChartMaker.add_annotations(max_annotation=True, custom_annotations=None, annotation_placement=dict(x=0.5,y=0.5))

If called and the chart is plotting timeseries data, this automatically adds annotations for the first and last data points. If max_annotation is True, it dynamically calculates the max value in the dataset and annotates it. the custom_annotation parameter expects a dictionary with date as a string and the annotation text. Note that this is meant for plotting single-series timeseries data.

If the chart is a Pie chart, the annotation_placement parameter enables moving the location of where the annotation is placed.

ChartMaker.add_dashed_line(date, annotation_text=None)

Adds a dashed line and annotation at the specified date; meant for timeseries data. If annotation_text is None, it uses the column name that contains the max value for the specified date.

ChartMaker.return_df()

Returns the dataframe used in a chart.

ChartMaker.return_fig()

Returns the Plotly figure that was created from calling the build method.

Customization Options

All style options can be passed via the options parameter when using ChartMaker. These options are merged with Plotly's base figure settings.

You can refer to:

Here’s a quick example:

options = {
    "tickprefix": {"y1": "$"},
    "ticksuffix": {"y1": "%"},
    "dimensions": {"width": 800, "height": 400},
    "font_family": "Cardo",
    "font_size": {"axes": 16, "legend": 12, "textfont": 12},
    "legend_placement": {"x": 1.05, "y": 1},
    "show_text": True,
    "annotations": True,
}

Chart Features

  • Grouped bar plots with custom sort and color mapping
  • Automatic annotations for first/last/max points
  • Time series support with datetime formatting
  • Pie chart labels, percentages, donut hole support
  • Heatmaps with flexible x/y/z column mapping

Contact

Email: brandynham1120@gmail.com

License

MIT License © Brandyn Hamilton

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts