chartengineer Documentation
chartengineer is a lightweight Python package for building publication-ready, highly customizable Plotly charts from pandas DataFrames.
It supports a flexible API for pie charts, grouped bar charts, heatmaps, time series, and area/line plots, with robust formatting, annotations, and layout tools.
Installation
pip install chartengineer
Or install from source:
git clone https://github.com/BrandynHamilton/chartengineer
cd chartengineer
pip install -e .
Quickstart
from chartengineer import ChartMaker
cm = ChartMaker(shuffle_colors=True)
cm.build(
df=my_df,
groupby_col="CHAIN",
num_col="TOTAL_VOLUME",
title="Bridge Volume by Chain",
chart_type="pie",
options={
"tickprefix": {"y1": "$"},
"annotations": True,
"texttemplate": "%{label}<br>%{percent}"
}
)
cm.add_title(subtitle="As of 2025-04-01")
cm.show_fig()
Supported Chart Types
"line" (default)
"bar"
"area"
"pie"
"heatmap"
You can use a string or dictionary:
chart_type = "bar"
chart_type = {"y1": "line", "y2": "bar"}
Check the tests directory for examples for each chart type.
Main Methods
ChartMaker.build(...)
Build a chart.
Arguments
df: pandas DataFrame
title: Chart title
chart_type: string or dict
groupby_col, num_col: for grouped series or pie/bar
axes_data: e.g. {"x": "DATE", "y1": ["TVL"]}
options: plot style and behavior options
ChartMaker.show_fig()
Render the current chart inline (Jupyter) or open in browser.
ChartMaker.save_fig(path, filetype='png')
Save the chart as .png, .svg, or .html.
ChartMaker.add_title(title, subtitle, x, y)
Adds a title to the chart itself, if title is None it defaults to the title name used in the build function. The X and Y parameters control the title's placement on the chart.
ChartMaker.add_annotations(max_annotation=True, custom_annotations=None, annotation_placement=dict(x=0.5,y=0.5))
If called and the chart is plotting timeseries data, this automatically adds annotations for the first and last data points. If max_annotation is True, it dynamically calculates the max value in the dataset and annotates it. the custom_annotation parameter expects a dictionary with date as a string and the annotation text. Note that this is meant for plotting single-series timeseries data.
If the chart is a Pie chart, the annotation_placement parameter enables moving the location of where the annotation is placed.
ChartMaker.add_dashed_line(date, annotation_text=None)
Adds a dashed line and annotation at the specified date; meant for timeseries data. If annotation_text is None, it uses the column name that contains the max value for the specified date.
ChartMaker.return_df()
Returns the dataframe used in a chart.
ChartMaker.return_fig()
Returns the Plotly figure that was created from calling the build method.
Customization Options
All style options can be passed via the options parameter when using ChartMaker. These options are merged with Plotly's base figure settings.
You can refer to:
Here’s a quick example:
options = {
"tickprefix": {"y1": "$"},
"ticksuffix": {"y1": "%"},
"dimensions": {"width": 800, "height": 400},
"font_family": "Cardo",
"font_size": {"axes": 16, "legend": 12, "textfont": 12},
"legend_placement": {"x": 1.05, "y": 1},
"show_text": True,
"annotations": True,
}
Chart Features
- Grouped bar plots with custom sort and color mapping
- Automatic annotations for first/last/max points
- Time series support with datetime formatting
- Pie chart labels, percentages, donut hole support
- Heatmaps with flexible x/y/z column mapping
Contact
Email: brandynham1120@gmail.com
License
MIT License © Brandyn Hamilton