You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

choose-models

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

choose-models

Model Selection Tool

0.1.6
pipPyPI
Maintainers
1

📦 Models Class – Regression Models Playground

This class helps you quickly test different regression algorithms (OLS, SGD, BGD) on any DataFrame and target.

✂️ split_data(ratio=0.8, randomState=42)

Splits data into train/test based on ratio. Uses self.target_column to separate X and y.

📈 Linear_Regression_OLS(get_equation=False, plot=False, accuracy=True)

Trains simple (1D) Linear Regression using Ordinary Least Squares.

  • get_equation: print learned line
  • plot: visualize
  • accuracy: print score

📊 MLinear_Regression_OLS(get_equation=False, plot=False, accuracy=True)

Multi-feature version of OLS Linear Regression.

MLinear_Regression_SGD(epochs=100, learning_rate=0.01, plot=False, accuracy=True, get_equation=False)

Multi-feature SGD Linear Regression. Trains with Stochastic Gradient Descent.

🌀 Linear_Regression_BGD(epochs=100, learning_rate=0.01, plot=False, accuracy=True, get_equation=False)

Simple (1D) Linear Regression using Batch Gradient Descent.

💪 MLinear_Regression_BGD(epochs=100, learning_rate=0.01, plot=False, accuracy=True, get_equation=False)

Multi-feature BGD-based Linear Regression.

🧼 Standard_Scale(features=None)

Standardizes features (z-score normalization). Applies to entire DataFrame if no features are specified. Re-splits data after scaling.

🚀 Linear_Regression_SGD(epochs=100, learning_rate=0.01, plot=False, accuracy=True, get_equation=False)

Simple (1D) Linear Regression using SGD.

📤 Extract_Data()

Returns (X_train, X_test, y_train, y_test) — useful for external use.

🆕 Set_DF(newDF, target_column)

Reset the class with a new DataFrame and target column.

🔀 Select_Model(model=None, batch_size=None, method=None, epochs=100, learning_rate=0.01, plot=False, accuracy=True, get_equation=False)

Unified interface to select and run any regression model or method.

  • model: Choose 'linear_regression' ('lr') or 'multi_linear_regression' ('mlr')
  • method: Specify algorithm ('ols', 'bgd', 'sgd', 'mgbd')
  • batch_size: For mini-batch gradient descent ('mgbd')
  • Other arguments are passed to the underlying method

Raises ValueError if model or method is unknown.

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts