🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Sign inDemoInstall
Socket

colab-print

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

colab-print

Enhanced display utilities for Jupyter/Colab notebooks with customizable styles

0.4.1
PyPI
Maintainers
1

Colab Print

PyPI version Python versions License

Colab Print is a Python library that enhances the display capabilities of Jupyter and Google Colab notebooks, providing beautiful, customizable HTML outputs for text, lists, dictionaries, tables, pandas DataFrames, and progress bars.

Features

  • 🎨 Rich Text Styling - Display text with predefined styles or custom CSS
  • 📊 Beautiful DataFrame Display - Present pandas DataFrames with extensive styling options
  • 📑 Customizable Tables - Create HTML tables with headers, rows, and custom styling
  • 📜 Formatted Lists - Display Python lists and tuples as ordered or unordered HTML lists
  • 📖 Readable Dictionaries - Render dictionaries as structured definition lists
  • 🎭 Extensible Themes - Use built-in themes or create your own custom styles
  • 📏 Smart Row/Column Limiting - Automatically display large DataFrames with sensible limits
  • 🔍 Cell Highlighting - Highlight specific rows, columns, or individual cells in tables and DataFrames
  • 📊 Progress Tracking - Display elegant progress bars with tqdm compatibility
  • 🔄 Graceful Fallbacks - Works even outside Jupyter/IPython environments
  • 🧩 Structured Data Detection - Automatic handling of nested structures, matrices, and array-like objects

Installation

pip install colab-print

Quick Start

from colab_print import Printer, header, success, progress
import pandas as pd
import time

# Create a printer with default styles
printer = Printer()

# Use pre-configured styling functions
header("Colab Print Demo")
success("Library loaded successfully!")

# Display styled text
printer.display("Hello, World!", style="highlight")

# Display a list with nested elements (automatically detected and styled)
my_list = ['apple', 'banana', ['nested', 'item'], 'cherry', {'key': 'value'}]
printer.display_list(my_list, ordered=True, style="info")

# Show a progress bar
for i in progress(range(10), desc="Processing"):
    time.sleep(0.2)  # Simulate work

# Display a dictionary
my_dict = {
    'name': 'Alice', 
    'age': 30, 
    'address': {'street': '123 Main St', 'city': 'Anytown'}
}
printer.display_dict(my_dict, style="success")

# Display a simple table
headers = ["Name", "Age", "City"]
rows = [
    ["Alice", 28, "New York"],
    ["Bob", 34, "London"],
    ["Charlie", 22, "Paris"]
]
printer.display_table(headers, rows, style="default")

# Display a pandas DataFrame with styling
df = pd.DataFrame({
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [28, 34, 22],
    'City': ['New York', 'London', 'Paris']
})
printer.display_df(df, 
                  highlight_cols=['Name'],
                  highlight_cells={(0, 'Age'): "background-color: #FFEB3B;"},
                  caption="Sample DataFrame")

Styling & Shortcut Functions

Predefined Style Shortcuts

Colab Print provides convenient shortcut functions with pre-configured styling:

from colab_print import (
    header, title, subtitle, section_divider, subheader,
    code, card, quote, badge, data_highlight, footer,
    highlight, info, success, warning, error, muted, primary, secondary,
    dfd, table, list_, dict_, progress
)

# Display styled text with a single function call
header("Main Section")
title("Document Title")
subtitle("Supporting information")
success("Operation completed!")
warning("Proceed with caution")
error("An error occurred")
code("print('Hello World')")

# Display different content types with shortcuts
table(headers, rows)
list_(my_list, ordered=True)
dict_(my_dict)
dfd(df, highlight_cols=["Name"])

Predefined Styles

  • default - Clean, professional styling
  • highlight - Stand-out text with emphasis
  • info - Informational blue text
  • success - Positive green message
  • warning - Attention-grabbing yellow alert
  • error - Critical red message
  • muted - Subtle gray text
  • primary - Primary blue-themed text
  • secondary - Secondary purple-themed text
  • code - Code-like display with monospace font
  • card - Card-like container with shadow
  • quote - Styled blockquote
  • notice - Attention-drawing notice
  • badge - Compact badge-style display

Custom Styling

You can add your own styles:

printer = Printer()
printer.add_style("custom", "color: purple; font-size: 20px; font-weight: bold;")
printer.display("Custom styled text", style="custom")

Display Methods

  • printer.display(text, style="default", **inline_styles): Displays styled text.
  • printer.display_list(items, ordered=False, style="default", item_style=None, **inline_styles): Displays lists/tuples.
  • printer.display_dict(data, style="default", key_style=None, value_style=None, **inline_styles): Displays dictionaries.
  • printer.display_table(headers, rows, style="default", **table_options): Displays basic tables.
  • printer.display_df(df, style="default", **df_options): Displays pandas DataFrames with many options.
  • printer.display_progress(total, desc="", style="default", **progress_options): Displays a progress bar.

Progress Tracking

Colab Print offers powerful progress tracking with tqdm compatibility:

from colab_print import progress, Printer
import time

# Simple progress bar using iterable
for i in progress(range(100), desc="Processing"):
    time.sleep(0.01)  # Do some work

# Manual progress
printer = Printer()
progress_id = printer.display_progress(total=50, desc="Manual progress")
for i in range(50):
    time.sleep(0.05)  # Do some work
    printer.update_progress(progress_id, i+1)

# Progress with customization
for i in progress(range(100), 
                 desc="Custom progress", 
                 color="#9C27B0", 
                 height="25px",
                 style="card"):
    time.sleep(0.01)

# Undetermined progress (loading indicator)
progress_id = printer.display_progress(total=None, desc="Loading...", animated=True)
time.sleep(3)  # Do some work with unknown completion time

DataFrame Display Options

The display_df method supports numerous customization options:

printer.display_df(df,
                  style='default',           # Base style
                  max_rows=20,               # Max rows to display
                  max_cols=10,               # Max columns to display
                  precision=2,               # Decimal precision for floats
                  header_style="...",        # Custom header styling
                  odd_row_style="...",       # Custom odd row styling
                  even_row_style="...",      # Custom even row styling
                  index=True,                # Show index
                  width="100%",              # Table width
                  caption="My DataFrame",    # Table caption
                  highlight_cols=["col1"],   # Highlight columns
                  highlight_rows=[0, 2],     # Highlight rows
                  highlight_cells={(0,0): "..."}, # Highlight specific cells
                  font_size="14px",          # Custom font size for all cells
                  text_align="center")       # Text alignment for all cells

Advanced List Display

Colab Print automatically detects and optimally displays complex data structures:

from colab_print import list_
import numpy as np
import pandas as pd

# Nested lists are visualized with hierarchical styling
nested_list = [1, 2, [3, 4, [5, 6]], 7]
list_(nested_list)

# Matrices are displayed as tables automatically
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
list_(matrix)

# NumPy arrays are handled seamlessly
np_array = np.array([[1, 2, 3], [4, 5, 6]])
list_(np_array)

# Pandas data structures work too
series = pd.Series([1, 2, 3, 4])
list_(series)

# Control display format manually if needed
list_(matrix, matrix_mode=False)  # Force list display for a matrix

Advanced Usage

Creating Custom Themes

custom_themes = {
    'dark': 'color: white; background-color: #333; font-size: 16px;',
    'fancy': 'color: #8A2BE2; font-family: "Brush Script MT", cursive; font-size: 20px;'
}

printer = Printer(additional_styles=custom_themes)
printer.display("Dark theme", style="dark")
printer.display("Fancy theme", style="fancy")

Creating Reusable Display Functions

# Create a function with predefined styling
my_header = printer.create_styled_display("header", color="#FF5722", font_size="24px")

# Use it multiple times with consistent styling
my_header("First Section")
my_header("Second Section")

# Still allows overrides at call time
my_header("Special Section", color="#9C27B0")

Handling Non-Notebook Environments

The library gracefully handles non-IPython environments by printing fallback text representations:

# This will work in regular Python scripts
printer.display_list([1, 2, 3])
printer.display_dict({'a': 1})
printer.display_df(df)

Exception Handling

Colab Print includes a comprehensive exception hierarchy for robust error handling:

from colab_print import (
    ColabPrintError,        # Base exception
    StyleNotFoundError,     # When a style isn't found
    DataFrameError,         # DataFrame-related issues
    InvalidParameterError,  # Parameter validation failures
    HTMLRenderingError      # HTML rendering problems
)

try:
    printer.display("Some text", style="non_existent_style")
except StyleNotFoundError as e:
    print(f"Style error: {e}")

Full Examples

For a comprehensive demonstration of all features, please see the example script:

example.py

This script covers:

  • Text, List, Dictionary, Table, and DataFrame display
  • Using built-in styles and inline styles
  • Adding custom styles
  • Creating a Printer instance with custom themes
  • Highlighting options for DataFrames
  • Progress bar usage and customization
  • Advanced list and nested structure display
  • Exception handling
  • Fallback behavior notes

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Keywords

animation

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts