colorspacious
.. image:: https://travis-ci.org/njsmith/colorspacious.svg?branch=master
:target: https://travis-ci.org/njsmith/colorspacious
:alt: Automated test status
.. image:: https://codecov.io/gh/njsmith/colorspacious/branch/master/graph/badge.svg
:target: https://codecov.io/gh/njsmith/colorspacious
:alt: Test coverage
.. image:: https://readthedocs.org/projects/colorspacious/badge/?version=latest
:target: http://colorspacious.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://zenodo.org/badge/38525000.svg
:target: https://zenodo.org/badge/latestdoi/38525000
Colorspacious is a powerful, accurate, and easy-to-use library for
performing colorspace conversions.
In addition to the most common standard colorspaces (sRGB, XYZ, xyY,
CIELab, CIELCh), we also include: color vision deficiency ("color
blindness") simulations using the approach of Machado et al (2009); a
complete implementation of CIECAM02 <https://en.wikipedia.org/wiki/CIECAM02>
_; and the perceptually
uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al
(2006).
To get started, simply write::
from colorspacious import cspace_convert
Jp, ap, bp = cspace_convert([64, 128, 255], "sRGB255", "CAM02-UCS")
This converts an sRGB value (represented as integers between 0-255) to
CAM02-UCS J'a'b'
coordinates (assuming standard sRGB viewing
conditions by default). This requires passing through 4 intermediate
colorspaces; cspace_convert
automatically finds the optimal route
and applies all conversions in sequence:
This function also of course accepts arbitrary NumPy arrays, so
converting a whole image is just as easy as converting a single value.
Documentation:
http://colorspacious.readthedocs.org/
Installation:
pip install colorspacious
Downloads:
https://pypi.python.org/pypi/colorspacious/
Code and bug tracker:
https://github.com/njsmith/colorspacious
Contact:
Nathaniel J. Smith njs@pobox.com
Dependencies:
- Python 2.6+, or 3.3+
- NumPy
Developer dependencies (only needed for hacking on source):
- nose: needed to run tests
License:
MIT, see LICENSE.txt for details.
References for algorithms we implement:
- Luo, M. R., Cui, G., & Li, C. (2006). Uniform colour spaces based on
CIECAM02 colour appearance model. Color Research & Application, 31(4),
320–330. doi:10.1002/col.20227
- Machado, G. M., Oliveira, M. M., & Fernandes, L. A. (2009). A
physiologically-based model for simulation of color vision
deficiency. Visualization and Computer Graphics, IEEE Transactions on,
15(6), 1291–1298. http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
Other Python packages with similar functionality that you might want
to check out as well or instead: