cs1
Compressed Sensing library for 1D (one-dimensional) Spectroscopic Profiling Data
package | module | sub-module | description |
---|
cs1[3] |
cs1.cs | basic functions for CS sensing, recovery, hyper-parameter grid-search, etc. |
cs1.basis | cs1.basis.common | commonly used non-adaptive CS transform bases[1] |
cs1.basis.adaptive | adaptive CS transform bases, e.g., LDA (linear discriminant analysis)-based, EBP (eigenvector-based projection)[2], VAE (variational auto-encoder) |
cs1.metrics | CS-related metrics, e.g., mutual coherence, sparsity, MSE, KLD |
cs1.security | cs1.security.tvsm | time-variant sensing matrix mechanism[4] |
cs1.domain | cs1.domain.audio | contains functions for audio and other one-dimensional signal processing. e.g., wave file I/O, lossy compression, ECG simulator |
cs1.domain.image | contains functions for image processing. e.g., image CS, lossy compression |
cs1.gui | provides a web-based playground for researchers. users can try different CS bases and sampling ratios |
Publications:
[1] Adaptive compressed sensing of Raman spectroscopic profiling data for discriminative tasks [J]. Talanta, 2020, doi: 10.1016/j.talanta.2019.120681
[2] Task-adaptive eigenvector-based projection (EBP) transform for compressed sensing: A case study of spectroscopic profiling sensor [J]. Analytical Science Advances. Chemistry Europe, 2021, doi: 10.1002/ansa.202100018
[3] Compressed Sensing library for spectroscopic profiling data [J]. Software Impacts, 2023, doi: 10.1016/j.simpa.2023.100492
[4] Secured telemetry based on time-variant sensing matrix – An empirical study of spectroscopic profiling, Smart Agricultural Technology, Volume 5, 2023, doi: 10.1016/j.atech.2023.100268
Installation
pip install cs1
A simple startup
import cs1
# Generate common non-adaptive bases and save to a local pickle file.
# The generation process can be very slow, so save it for future use.
cs1.basis.common.Generate_PSIs(n, savepath = 'PSIs_' + str(n) + '.pkl') # n is the data/signal dimensionality
# load back bases
file = open('PSIs_' + str(n) + '.pkl','rb')
PSIs = pickle.load(file)
file.close()
# sparsity analysis
cs1.metrics.analyze_sparsity(x, PSIs)
# compare different bases and sampling ratio on a single sample
mses, rmses = cs1.cs.GridSearch_Sensing_n_Recovery(x, PSIs, solver = 'LASSO') # returns MSEs and relative MSEs
low-level cs functions
from cs1.basis.common import *
dftmtx()
dctmtx()
hwtmtx()
from cs1.cs import *
sensing()
recovery()
from cs1.metrics import *
mutual_coherence()
...
singal processing functions for audio / image domains
from cs1.domain.audio import *
simulate_ECG()
dct_lossy_signal_compression()
dft_lossy_signal_compression()
from cs1.domain.image import *
img_dct()
img_dft()
dct_lossy_image_compression()
dft_lossy_image_compression()
adaptive cs bases
from cs1.basis.adaptive import *
PSI, _ = EBP(X) # X is a m-by-n training dataset. PSI is the EBP basis
PSI, _, _ = LDA(X, y, display = True) # X and y are training dataset. PSI is the LDA basis.
run as a local web server
python -m cs1.gui.run
You can then access the web GUI at the 5006 port: