🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

csaps

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

csaps

Cubic spline approximation (smoothing)

1.3.2
PyPI
Maintainers
1

csaps

PyPI version Supported Python versions GitHub Actions (Tests) Documentation Status Coverage Status License

csaps is a Python package for univariate, multivariate and n-dimensional grid data approximation using cubic smoothing splines. The package can be useful in practical engineering tasks for data approximation and smoothing.

Installing

Use pip for installing:

pip install -U csaps

or Poetry:

poetry add csaps

The module depends only on NumPy and SciPy. Python 3.10 or above is supported.

Simple Examples

Here is a couple of examples of smoothing data.

An univariate data smoothing:

import numpy as np
import matplotlib.pyplot as plt

from csaps import csaps

np.random.seed(1234)

x = np.linspace(-5., 5., 25)
y = np.exp(-(x/2.5)**2) + (np.random.rand(25) - 0.2) * 0.3
xs = np.linspace(x[0], x[-1], 150)

ys = csaps(x, y, xs, smooth=0.85)

plt.plot(x, y, 'o', xs, ys, '-')
plt.show()

univariate

A surface data smoothing:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from csaps import csaps

np.random.seed(1234)
xdata = [np.linspace(-3, 3, 41), np.linspace(-3.5, 3.5, 31)]
i, j = np.meshgrid(*xdata, indexing='ij')
ydata = (3 * (1 - j)**2. * np.exp(-(j**2) - (i + 1)**2)
         - 10 * (j / 5 - j**3 - i**5) * np.exp(-j**2 - i**2)
         - 1 / 3 * np.exp(-(j + 1)**2 - i**2))
ydata = ydata + (np.random.randn(*ydata.shape) * 0.75)

ydata_s = csaps(xdata, ydata, xdata, smooth=0.988)

fig = plt.figure(figsize=(7, 4.5))
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor('none')
c = [s['color'] for s in plt.rcParams['axes.prop_cycle']]
ax.plot_wireframe(j, i, ydata, linewidths=0.5, color=c[0], alpha=0.5)
ax.scatter(j, i, ydata, s=10, c=c[0], alpha=0.5)
ax.plot_surface(j, i, ydata_s, color=c[1], linewidth=0, alpha=1.0)
ax.view_init(elev=9., azim=290)

plt.show()

surface

Documentation

More examples of usage and the full documentation can be found at https://csaps.readthedocs.io.

Development

We use Poetry to manage the project:

git clone https://github.com/espdev/csaps.git
cd csaps
poetry install -E docs

Also, install pre-commit hooks:

poetry run pre-commit install

Testing and Linting

We use pytest for testing and ruff/mypy for linting. Use poethepoet to run tests and linters:

poetry run poe test
poetry run poe check

Algorithm and Implementation

csaps Python package is inspired by MATLAB CSAPS function that is an implementation of Fortran routine SMOOTH from PGS (originally written by Carl de Boor).

Also, the algothithm implementation in other languages:

  • csaps-rs Rust ndarray/sprs based implementation
  • csaps-cpp C++11 Eigen based implementation (incomplete)

References

C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

License

MIT

Keywords

cubic

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts