Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

cxx-image-io

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

cxx-image-io

Image IO APIs for wide range image formats (jpg, png, tif, dng, bmp, yuv, nv12 and RAWs), support Exif, interact nicely with numpy array.

  • 1.0.8
  • PyPI
  • Socket score

Maintainers
1

CXX Image IO

PyPI - Version Supported Python versions Supported OS Supported Archi License Wheel OS CI Weekly

CXX Image IO is a Python project which provides the image IO interfaces, binding with the C++ library: https://github.com/emmcb/cxx-image, These IO interfaces are designed to read and write images in many file formats in generic way and to interact nicely with numpy array.

Image formatReadWriteEXIFPixel precisionPixel typeFile extensionSidecar needed
BMPxx8 bitsGrayscale, RGB, RGBA.bmp
CFAxx16 bitsBayer.cfa
DNGxxx16 bits, floatBayer, RGB.dng
JPEGxxx8 bitsGrayscale, RGB.jpg, .jpeg
MIPI RAWxx10 bits, 12 bitsBayer.RAWMIPI, .RAWMIPI10, .RAWMIPI12x
PLAIN RAWxx**.raw .plain16, .nv12, yuv, *x
PNGxx8 bits, 16 bitsGrayscale, RGB, RGBA.png
TIFFxxx8 bits, 16 bits, floatBayer, RGB.tif, .tiff

Getting Started

Prerequisites

This projet currently supports Python from 3.10 to 3.13 on

  • Windows: x86_64
  • Linux: x86_64 and aarch64, glibc v2.28+, musl libc v1.2+
  • MacOS: x86_64 and arm64, v11.0+

Installation

The python package cxx-image-io is to be installed by pip

pip install cxx-image-io

Usage

Image reading

read_image is able to read a image file and return a numpy array and ImageMetadata object.

from cxx_image_io import read_image
from cxx_image_io import ImageMetadata
import numpy as np
from pathlib import Path

image, metadata = read_image(Path('/path/to/image.jpg'))
assert isinstance(image, np.ndarray)

print('Type:', image.dtype)
print('Shape:', image.shape)

image is a numpy array which is suitable for the image processing afterwards.

The print result could be like this:

Type: uint8
Shape: (551, 603, 3)

ImageMetadata is the information about the image, the component fileInfo including the pixel type, pixel precision and image layout, which define fundamentally how the pixels arranged in buffer.

print(metadata.fileInfo)

The print result could be like this:

{'pixelPrecision': 8, 'imageLayout': 'interleaved', 'pixelType': 'rgb'}

metadata.fileInfo shows: image is a 3-dimensional numpy array, where rgb 3 channels interleaved, in each channel, pixel depth is 8 bits.

ImageMetadata has more components than fileInfo, it also includes ExifMetadata, help(ImageMetadata) will show the details.

Image reading with sidecar JSON

Some file formats need to know in advance some informations about the image. For example, the PLAIN RAW format is just a simple dump of a buffer into a file, thus it needs to know how to interpret the data.

Bayer Plain Raw 16 bits

image, metadata = read_image(Path('/path/to/image.plain16'))
print('Type:', image.dtype)
print('Shape:', image.shape)
print(metadata.fileInfo)

In this case, user need to have an image sidecar JSON located next to the image file as the same name and path '/path/to/image.json'

{
    "fileInfo": {
        "format": "plain",
        "height": 3072,
        "width": 4080
        "pixelPrecision": 16,
        "pixelType": "bayer_gbrg",
    }
}

After image reading, the information in JSON sidecar is parsed in ImageMetadata object.

The print result of will be like this:

Type: uint16
Shape: (3072, 4080)
{'width': 4080, 'height': 3072, 'pixelPrecision': 16, 'imageLayout': 'planar', 'pixelType': 'bayer_gbrg'}

metadata.fileInfo shows that image is a 2-dimensional numpy array, where pixel is Bayer type, planar layout (not interleaved), pixel depth is 16 bits.

Image sidecar is not mandatory, for the other formats which have already image information in their header, like jpg, png, tif, cfa. we don't need to provide image metadata.

Other image reading with sidecar examples

Click to unfold other image format sidecar examples
Packed RAW MIPI 12 bits:

python code

image, metadata = read_image(Path('/path/to/image.RAWMIPI12'))

sidecar json

{
    "fileInfo": {
        "fileFormat": "raw12",
        "height": 3000,
        "width": 4000,
        "pixelPrecision": 12,
        "pixelType": "bayer_gbrg"
    }
}
Packed RAW MIPI 10 bits:

python code

image, metadata = read_image(Path('/path/to/image.RAWMIPI'))

sidecar json

{
    "fileInfo": {
        "height": 3000,
        "width": 4000,
		"format": "raw10",
		"pixelPrecision": 10,
		"pixelType": "bayer_grbg"
    }
}
YUV 420 buffer 8 bits:

python code

image, metadata = read_image(Path('/path/to/image.yuv'))

sidecar json

{
    "fileInfo": {
        "format": "plain",
        "height": 300,
        "width": 400,
        "imageLayout": "yuv_420"
    }
}
NV12 buffer 8 bits:

python code

image, metadata = read_image(Path('/path/to/image.nv12'))

sidecar json

{
    "fileInfo": {
        "format": "plain",
        "height": 300,
        "width": 400,
        "imageLayout": "nv12"
    }
}

Split and merge image channels

After calling read_image, cxx-image-io provides a public API split_image_channels which helps to split to different colors channels, so that user can do the different processes on them. The function return type is a dictionary which contains the different color channel name as keys, and the value in numpy array of one single channel.

before calling write_image, cxx-image-io provides a public API merge_image_channels which helps to merge different colors channels to a numpy array buffer.

from cxx_image_io import read_image, split_image_channels, merge_image_channels, ImageLayout, ImageMetadata, PixelRepresentation, PixelType
import numpy as np
from pathlib import Path

rgb, metadata = read_image(Path('rgb_8bit.jpg'))

channels = split_image_channels(rgb, metadata)

# print(channels['r'])  # Red channel in numpy array
# print(channels['g'])  # Green channel in numpy array
# print(channels['b'])  # Blue channel in numpy array

rgb_post = merge_image_channels(channels, metadata)

np.array_equal(rgb, rgb_post)

cfa, metadata = read_image(Path('bayer_16bit.plain16'))

channels = split_image_channels(cfa, metadata)

# print(channels['gr'])  # Bayer Gr pixels in numpy array
# print(channels['r'])  # Bayer R pixels in numpy array
# print(channels['b'])  # Bayer B pixels in numpy array
# print(channels['gb'])  # Bayer Gb pixels in numpy array

cfa_post = merge_image_channels(channels, metadata)

np.array_equal(cfa, cfa_post)

yuv, metadata = read_image(Path('raw.nv12'))

channels = split_image_channels(yuv, metadata)

# print(channels['y'])  # Y plane in numpy array
# print(channels['u'])  # U plane in numpy array
# print(channels['v'])  # V plane in numpy array

yuv_post = merge_image_channels(channels, metadata)

np.array_equal(yuv, yuv_post)

Image writing

write_image is able to write a numpy array to image file.

To write the pure numpy array to different image file extensions. User need to define the following fundamental parameters in ImageMetadata which is part of ImageWriter.Options. In order to call the specific C++ image libraries with them.

from cxx_image_io import ImageMetadata, ImageWriter, FileFormat, PixelType, ImageLayout
from cxx_image_io import write_image
import numpy as np
from pathlib import Path

metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.RGB
metadata.fileInfo.imageLayout = ImageLayout.INTERLEAVED

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.jpg'), image, write_options)

write_image can determine the image format by file extensions, but some formats don't not rely on a specific extension, for example the PLAIN format that allows to directly dump the image buffer to a file. In this case, the format can be specified through ImageWriter.Options.

metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.BAYER_GBRG
metadata.fileInfo.imageLayout = ImageLayout.PLANAR

write_options = ImageWriter.Options(metadata)
write_options.fileFormat = FileFormat.PLAIN

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.plain16'), image, write_options)

Other image writing examples

Click to unfold other image writing examples
Packed RAW MIPI 12 bits:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.BAYER_GBRG  # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 12

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.RAWMIPI12'), image, write_options)
Packed RAW MIPI 10 bits:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.BAYER_GBRG # to adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 10

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.RAWMIPI10'), image, write_options)
YUV 420 buffer 8 bits:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.YUV
metadata.fileInfo.imageLayout = ImageLayout.YUV_420

write_options = ImageWriter.Options(metadata)
write_options.fileFormat = FileFormat.PLAIN

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.yuv'), image, write_options)

NV12 buffer 8 bits:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.YUV
metadata.fileInfo.imageLayout = ImageLayout.NV12

write_options = ImageWriter.Options(metadata)
write_options.fileFormat = FileFormat.PLAIN

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.nv12'), image, write_options)
Bayer dng 12 bits:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.BAYER_RGGB  # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 12

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.dng'), image, write_options)
RGB 8 bits images (jpg, png, tif, bmp):
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.RGB
metadata.fileInfo.imageLayout = ImageLayout.INTERLEAVED

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.jpg'), image, write_options)
CFA 16 bits image:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.BAYER_RGGB  # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 16

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.cfa'), image, write_options)
Grayscale 16 bits png image:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.GRAYSCALE
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 16

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.png'), image, write_options)
Bayer 16 bits tif image:
metadata = ImageMetadata()

metadata.fileInfo.pixelType = PixelType.BAYER_RGGB  # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 16

write_options = ImageWriter.Options(metadata)

assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.tif'), image, write_options)

EXIF

Some image formats, like JPEG and TIFF, support EXIF reading and writing.

If supported, EXIF can be read by calling read_exif and be written by calling write_exif.

from cxx_image_io import read_exif, write_exif
from pathlib import Path

exif = read_exif(Path('/path/to/image.jpg'))

print(exif)

write_exif(Path('path/to/new_image.jpg'), exif)

print(exif) will give the following output like:

{
  'make': 'Canon',
  'model': 'Canon EOS 40D',
  'orientation': 1,
  'software': 'GIMP 2.4.5',
  'exposureTime': [1, 160],
  'fNumber': [71, 10],
  'isoSpeedRatings': 100,
  'dateTimeOriginal': '2008:05:30 15:56:01',
  'exposureBiasValue': [0, 1],
  'focalLength': [135, 1]
}

user can use help(exif) to see the definition of ExifMetdata.

EXIF metadata can be read and written along with an image by specifying them in the ImageMetadata. In this case, the EXIF wil be read and written when calling read_image and write_image.

image, metadata = read_image(Path('/path/to/image.jpg'))
metadata.exifMetadata.make = 'Custom'
write_options = ImageWriter.Options(metadata)
write_image(Path('/path/to/image.jpg'), image, write_options)

Dependencies

This project has the dependencies of the following libraries by cmake FetchContent:

Statically linked

Dynamically linked

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc