CXX Image IO
CXX Image IO is a Python project which provides the image IO interfaces, binding with the C++ library: https://github.com/emmcb/cxx-image,
These IO interfaces are designed to read and write images in many file formats in generic way and to interact nicely with numpy array.
Image format | Read | Write | EXIF | Pixel precision | Pixel type | File extension | Sidecar needed |
---|
BMP | x | x | | 8 bits | Grayscale, RGB, RGBA | .bmp | |
CFA | x | x | | 16 bits | Bayer | .cfa | |
DNG | x | x | x | 16 bits, float | Bayer, RGB | .dng | |
JPEG | x | x | x | 8 bits | Grayscale, RGB | .jpg, .jpeg | |
MIPI RAW | x | x | | 10 bits, 12 bits | Bayer | .RAWMIPI, .RAWMIPI10, .RAWMIPI12 | x |
PLAIN RAW | x | x | | * | * | .raw .plain16, .nv12, yuv, * | x |
PNG | x | x | | 8 bits, 16 bits | Grayscale, RGB, RGBA | .png | |
TIFF | x | x | x | 8 bits, 16 bits, float | Bayer, RGB | .tif, .tiff | |
Getting Started
Prerequisites
This projet currently supports Python from 3.10
to 3.13
on
- Windows:
x86_64
- Linux:
x86_64
and aarch64
, glibc v2.28+
, musl libc v1.2+
- MacOS:
x86_64
and arm64
, v11.0+
Installation
The python package cxx-image-io
is to be installed by pip
pip install cxx-image-io
Usage
Image reading
read_image
is able to read a image file and return a numpy array and ImageMetadata object.
from cxx_image_io import read_image
from cxx_image_io import ImageMetadata
import numpy as np
from pathlib import Path
image, metadata = read_image(Path('/path/to/image.jpg'))
assert isinstance(image, np.ndarray)
print('Type:', image.dtype)
print('Shape:', image.shape)
image is a numpy array which is suitable for the image processing afterwards.
The print result could be like this:
Type: uint8
Shape: (551, 603, 3)
ImageMetadata
is the information about the image, the component fileInfo
including the pixel type, pixel precision and image layout, which define fundamentally how the pixels arranged in buffer.
print(metadata.fileInfo)
The print result could be like this:
{'pixelPrecision': 8, 'imageLayout': 'interleaved', 'pixelType': 'rgb'}
metadata.fileInfo
shows: image
is a 3-dimensional numpy array, where rgb 3 channels interleaved, in each channel, pixel depth is 8 bits.
ImageMetadata
has more components than fileInfo
, it also includes ExifMetadata
, help(ImageMetadata)
will show the details.
Image reading with sidecar JSON
Some file formats need to know in advance some informations about the image.
For example, the PLAIN RAW format is just a simple dump of a buffer into a file, thus it needs to know how to interpret the data.
Bayer Plain Raw 16 bits
image, metadata = read_image(Path('/path/to/image.plain16'))
print('Type:', image.dtype)
print('Shape:', image.shape)
print(metadata.fileInfo)
In this case, user need to have an image sidecar JSON located next to the image file as the same name and path '/path/to/image.json'
{
"fileInfo": {
"format": "plain",
"height": 3072,
"width": 4080
"pixelPrecision": 16,
"pixelType": "bayer_gbrg",
}
}
After image reading, the information in JSON sidecar is parsed in ImageMetadata
object.
The print result of will be like this:
Type: uint16
Shape: (3072, 4080)
{'width': 4080, 'height': 3072, 'pixelPrecision': 16, 'imageLayout': 'planar', 'pixelType': 'bayer_gbrg'}
metadata.fileInfo
shows that image
is a 2-dimensional numpy array, where pixel is Bayer type, planar layout (not interleaved), pixel depth is 16 bits.
Image sidecar is not mandatory, for the other formats which have already image information in their header, like jpg, png, tif, cfa. we don't need to provide image metadata.
Other image reading with sidecar examples
Click to unfold other image format sidecar examples
Packed RAW MIPI 12 bits:
python code
image, metadata = read_image(Path('/path/to/image.RAWMIPI12'))
sidecar json
{
"fileInfo": {
"fileFormat": "raw12",
"height": 3000,
"width": 4000,
"pixelPrecision": 12,
"pixelType": "bayer_gbrg"
}
}
Packed RAW MIPI 10 bits:
python code
image, metadata = read_image(Path('/path/to/image.RAWMIPI'))
sidecar json
{
"fileInfo": {
"height": 3000,
"width": 4000,
"format": "raw10",
"pixelPrecision": 10,
"pixelType": "bayer_grbg"
}
}
YUV 420 buffer 8 bits:
python code
image, metadata = read_image(Path('/path/to/image.yuv'))
sidecar json
{
"fileInfo": {
"format": "plain",
"height": 300,
"width": 400,
"imageLayout": "yuv_420"
}
}
NV12 buffer 8 bits:
python code
image, metadata = read_image(Path('/path/to/image.nv12'))
sidecar json
{
"fileInfo": {
"format": "plain",
"height": 300,
"width": 400,
"imageLayout": "nv12"
}
}
Split and merge image channels
After calling read_image
, cxx-image-io
provides a public API split_image_channels
which helps to split to different colors channels, so that user can do the different processes on them. The function return type is a dictionary which contains the different color channel name as keys, and the value in numpy array of one single channel.
before calling write_image
, cxx-image-io
provides a public API merge_image_channels
which helps to merge different colors channels to a numpy array buffer.
from cxx_image_io import read_image, split_image_channels, merge_image_channels, ImageLayout, ImageMetadata, PixelRepresentation, PixelType
import numpy as np
from pathlib import Path
rgb, metadata = read_image(Path('rgb_8bit.jpg'))
channels = split_image_channels(rgb, metadata)
# print(channels['r']) # Red channel in numpy array
# print(channels['g']) # Green channel in numpy array
# print(channels['b']) # Blue channel in numpy array
rgb_post = merge_image_channels(channels, metadata)
np.array_equal(rgb, rgb_post)
cfa, metadata = read_image(Path('bayer_16bit.plain16'))
channels = split_image_channels(cfa, metadata)
# print(channels['gr']) # Bayer Gr pixels in numpy array
# print(channels['r']) # Bayer R pixels in numpy array
# print(channels['b']) # Bayer B pixels in numpy array
# print(channels['gb']) # Bayer Gb pixels in numpy array
cfa_post = merge_image_channels(channels, metadata)
np.array_equal(cfa, cfa_post)
yuv, metadata = read_image(Path('raw.nv12'))
channels = split_image_channels(yuv, metadata)
# print(channels['y']) # Y plane in numpy array
# print(channels['u']) # U plane in numpy array
# print(channels['v']) # V plane in numpy array
yuv_post = merge_image_channels(channels, metadata)
np.array_equal(yuv, yuv_post)
Image writing
write_image
is able to write a numpy array to image file.
To write the pure numpy array to different image file extensions.
User need to define the following fundamental parameters in ImageMetadata which is part of ImageWriter.Options.
In order to call the specific C++ image libraries with them.
from cxx_image_io import ImageMetadata, ImageWriter, FileFormat, PixelType, ImageLayout
from cxx_image_io import write_image
import numpy as np
from pathlib import Path
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.RGB
metadata.fileInfo.imageLayout = ImageLayout.INTERLEAVED
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.jpg'), image, write_options)
write_image
can determine the image format by file extensions, but some formats don't not rely on a specific extension, for example the PLAIN format that allows to directly dump the image buffer to a file. In this case, the format can be specified through ImageWriter.Options.
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.BAYER_GBRG
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
write_options = ImageWriter.Options(metadata)
write_options.fileFormat = FileFormat.PLAIN
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.plain16'), image, write_options)
Other image writing examples
Click to unfold other image writing examples
Packed RAW MIPI 12 bits:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.BAYER_GBRG # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 12
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.RAWMIPI12'), image, write_options)
Packed RAW MIPI 10 bits:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.BAYER_GBRG # to adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 10
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.RAWMIPI10'), image, write_options)
YUV 420 buffer 8 bits:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.YUV
metadata.fileInfo.imageLayout = ImageLayout.YUV_420
write_options = ImageWriter.Options(metadata)
write_options.fileFormat = FileFormat.PLAIN
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.yuv'), image, write_options)
NV12 buffer 8 bits:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.YUV
metadata.fileInfo.imageLayout = ImageLayout.NV12
write_options = ImageWriter.Options(metadata)
write_options.fileFormat = FileFormat.PLAIN
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.nv12'), image, write_options)
Bayer dng 12 bits:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.BAYER_RGGB # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 12
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.dng'), image, write_options)
RGB 8 bits images (jpg, png, tif, bmp):
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.RGB
metadata.fileInfo.imageLayout = ImageLayout.INTERLEAVED
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.jpg'), image, write_options)
CFA 16 bits image:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.BAYER_RGGB # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 16
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.cfa'), image, write_options)
Grayscale 16 bits png image:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.GRAYSCALE
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 16
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.png'), image, write_options)
Bayer 16 bits tif image:
metadata = ImageMetadata()
metadata.fileInfo.pixelType = PixelType.BAYER_RGGB # adapt with User's RAW Bayer pattern.
metadata.fileInfo.imageLayout = ImageLayout.PLANAR
metadata.fileInfo.pixelPrecision = 16
write_options = ImageWriter.Options(metadata)
assert isinstance(image, np.ndarray)
write_image(Path('/path/to/image.tif'), image, write_options)
EXIF
Some image formats, like JPEG and TIFF, support EXIF reading and writing.
If supported, EXIF can be read by calling read_exif
and be written by calling write_exif
.
from cxx_image_io import read_exif, write_exif
from pathlib import Path
exif = read_exif(Path('/path/to/image.jpg'))
print(exif)
write_exif(Path('path/to/new_image.jpg'), exif)
print(exif)
will give the following output like:
{
'make': 'Canon',
'model': 'Canon EOS 40D',
'orientation': 1,
'software': 'GIMP 2.4.5',
'exposureTime': [1, 160],
'fNumber': [71, 10],
'isoSpeedRatings': 100,
'dateTimeOriginal': '2008:05:30 15:56:01',
'exposureBiasValue': [0, 1],
'focalLength': [135, 1]
}
user can use help(exif)
to see the definition of ExifMetdata
.
EXIF metadata can be read and written along with an image by specifying them in the ImageMetadata. In this case, the EXIF wil be read and written when calling read_image
and write_image
.
image, metadata = read_image(Path('/path/to/image.jpg'))
metadata.exifMetadata.make = 'Custom'
write_options = ImageWriter.Options(metadata)
write_image(Path('/path/to/image.jpg'), image, write_options)
Dependencies
This project has the dependencies of the following libraries by cmake FetchContent:
Statically linked
Dynamically linked
License
This project is licensed under the MIT License - see the LICENSE.md file for details.