Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

danila-lib

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

danila-lib

This is the module for detecting and classifying text on rama pictures

  • 3.1.0
  • PyPI
  • Socket score

Maintainers
1

danila_lib v1.3.7

python library for Danila

To install project made

pip install danila-lib

To use in your project

from danila.danila import Danila

All use methods are in

class Danila

main method returns dict {'number', 'prod', 'year'} for openCV rama img or 'no_rama'

def text_recognize(self, img):

steps for algorythm

returns string - class of rama, img - openCV frame

def rama_classify(self, img):

returns openCV frame with rama from openCV frame

def rama_detect(self, img):

returns openCV image with cut_rama

def rama_cut(self, img):

returns openCV cut rama with drawn text areas

def text_detect_cut(self, img):

returns openCV img with drawn text areas

def text_detect(self, img):

in package data/neuro there is module Rama_classify_class

class Rama_classify_class

reads CNN taught model and includes it in class example

def __init__():

makes grey NumPy Array(1,512,512) of doubles[0..1] from openCV image

def prepare_img(img : openCV frame): NumPy Array(1,512,512)[0..1]

classify openCV img with CNN, returns list with double[0..1] values

def work_img(img : openCV frame): Double[0..1] list

classify openCV img with CNN, returns Class_im

def classify(img : openCV frame): Class_im

in package data/neuro there is module Rama_detect_class

class Rama_detect_class

reads yolov5 taught model from yandex-disk and includes it in class example

def __init__(self, model_path, model_name, yolo_path):

получить JSON с результатами yolo

def work_img(self, img_path):

получить координаты прямоугольника с рамой

def rama_detect(self, img_path):

in package data/neuro there is module Rama_text_detect_class

class Rama_text_detect_class

reads yolov5 taught model from yandex-disk and includes it in class example

def __init__(self, model_path, model_name, yolo_path):

find text areas on img from img_path with yolov5, returns yolojson

def work_img(self, img_path):

find text areas on img from img_path with yolov5, returns dict with rects for each text class

def text_detect(self, img_path):

draw img_text_areas on img, returns opencv img

def draw_text_areas_in_opencv(self, image_text_areas, img):

in package data/neuro there is module Letters_recognize

class Letters_recognize:

main_method takes all image_text_areas from image_rama_cut and recognize text

def work_image_cut(self, image_text_areas, image_rama_cut, number_length, prod_length, year_length):

read CNN model from yandex and put into object

def __init__(self):

cut text_areas imgs for each Rect from rect_array returns openCv imgs list

def make_cuts(self, img_rama_cut, rect_array):

for every text_class recognize text from all areas of text_class, length is depends on class and prod, returns string

def work_image_cuts(self, number_image_cuts, length):

recognize one word of given length from one img, returns str

def work_img_word(self, image_number, letter_number):

prepare img of one letter for CNN, returns np_array(1,28,28,1) of Double[0..1]

def prepare_img_letter(self, image_letter):

recognize img of one letter with CNN, returns list[10] of p

def work_img_letter(self, image_initial):

recognize img of one letter with CNN, returns letter in str

def classify_letter(self, image_letter):

in package data/result Rect module for rectangle operations

прочитать из json результата йоло

@staticmethod
def get_rect_from_yolo_json(yolo_json):

makes Rect object from xmin, xmax, ymin, ymax

def __init__(self, xmin=0, xmax=0, ymin=0, ymax=0):

Найти IOU между этим прямоугольником и другим, данным в объекте

def IoU(self, rect):

makes string from object

def __str__(self):

find intersection square between object and other rectangle

def intersection(self, rect):

find union RECT between object and other rectangle

def union(self, rect):

in package data/result Class_im

class Class_im(Enum):
    rama_no_spring = 0
    rama_spring = 1

in package data/result class Text_area

def __init__(self, dict_text_area):
    self.class_im = Class_text(dict_text_area['class'])
    self.rect = Rect(...)

in package data/result class image_text_areas

class contains dict with Rects list for each text_class

class Image_text_areas:

makes dict {Class_text.number : [], Class_text.prod : [], Class_text.text : [], Class_text.year : []}

def __init__(self):

add text area to dict

def add_area(self, text_area):

add list of text areas

def fill_in_with_areas(self, areas):

delete all cases in which two areas are intersected

def correct_intersections(self):

changes Rects coordinates from cut_img to whole_img from rama Rect

def explore_to_whole_image(self, rama_rect):

exapmles of using you can find

https://github.com/Arseniy-Zhuck/danila_lib_demo

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc