![Create React App Officially Deprecated Amid React 19 Compatibility Issues](https://cdn.sanity.io/images/cgdhsj6q/production/04fa08cf844d798abc0e1a6391c129363cc7e2ab-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Create React App Officially Deprecated Amid React 19 Compatibility Issues
Create React App is officially deprecated due to React 19 issues and lack of maintenance—developers should switch to Vite or other modern alternatives.
data-dictionary-cui-mapping
Advanced tools
This package allows you to load in a data dictionary and map cuis to defined fields using either the UMLS API or MetaMap API from NLM, or a Semantic Search pipeline using Pinecone vector database.
This package assists with mapping a user's data dictionary fields to UMLS concepts. It is designed to be modular and flexible to allow for different configurations and use cases.
Roughly, the high-level steps are as follows:
Use the package manager pip to install data-dictionary-cui-mapping from PyPI or pip install from the GitHub repo. The project uses poetry for packaging and dependency management.
pip install data-dictionary-cui-mapping
#pip install git+https://github.com/kevon217/data-dictionary-cui-mapping.git
Below is a sample data dictionary format (.csv) that can be used as input for this package:
variable name | title | permissible value descriptions |
---|---|---|
AgeYrs | Age in years | |
CaseContrlInd | Case control indicator | Case;Control;Unknown |
In order to run and customize these pipelines, you will need to create/edit yaml configuration files located in configs. Run configurations are saved and can be reloaded.
├───ddcuimap
│ ├───configs
│ │ │ config.yaml
│ │ │ __init__.py
│ │ │
│ │ ├───apis
│ │ │ __init__.py
│ │ │ config_metamap_api.yaml
│ │ │ config_pinecone_api.yaml
│ │ │ config_umls_api.yaml
│ │ │
│ │ ├───custom
│ │ │ de.yaml
│ │ │ hydra_base.yaml
│ │ │ pvd.yaml
│ │ │ title_def.yaml
│ │ │
│ │ ├───semantic_search
│ │ │ embeddings.yaml
# from ddcuimap.umls import batch_query_pipeline as umls_bqp
# from ddcuimap.metamap import batch_query_pipeline as mm_bqp
# from ddcuimap.semantic_search import batch_hybrid_query_pipeline as ss_bqp
from ddcuimap.hydra_search import batch_hydra_query_pipeline as hs_bqp
from ddcuimap.utils import helper
from omegaconf import OmegaConf
cfg_hydra = helper.compose_config(overrides=["custom=hydra_base"])
# cfg_umls = helper.compose_config(overrides=["custom=de", "apis=config_umls_api"])
cfg_mm = helper.compose_config(overrides=["custom=de", "apis=config_metamap_api"])
cfg_ss = helper.compose_config(
overrides=[
"custom=title_def",
"semantic_search=embeddings",
"apis=config_pinecone_api",
]
)
# # UMLS API CREDENTIALS
# cfg_umls.apis.umls.user_info.apiKey = ''
# cfg_umls.apis.umls.user_info.email = ''
# # MetaMap API CREDENTIALS
# cfg_mm.apis.metamap.user_info.apiKey = ''
# cfg_mm.apis.metamap.user_info.email = ''
#
# # Pinecone API CREDENTIALS
# cfg_ss.apis.pinecone.index_info.apiKey = ''
# cfg_ss.apis.pinecone.index_info.environment = ''
print(OmegaConf.to_yaml(cfg_hydra))
# df_umls, cfg_umls = umls_bqp.run_umls_batch(cfg_umls)
# df_mm, cfg_mm = mm_bqp.run_mm_batch(cfg_mm)
# df_ss, cfg_ss = ss_bqp.run_hybrid_ss_batch(cfg_ss)
df_hydra, cfg_step1 = hs_bqp.run_hydra_batch(cfg_hydra, cfg_umls=None, cfg_mm=cfg_mm, cfg_ss=cfg_ss)
print(df_hydra.head())
*see curation example in notebooks/examples_files/DE_Step-1_curation_keepCol.xlsx
from ddcuimap.curation import create_dictionary_import_file
from ddcuimap.curation import check_cuis
from ddcuimap.utils import helper
cfg_step1 = helper.load_config(helper.choose_file("Load config file from Step 1"))
df_dd = create_dictionary_import_file.create_dd_file(cfg_step1)
print(df_dd.head())
cfg_step2 = helper.load_config(helper.choose_file("Load config file from Step 2"))
df_check = check_cuis.check_cuis(cfg_step2)
print(df_check.head())
Below is a sample modified data dictionary with curated CUIs after:
variable name | title | data element concept identifiers | data element concept names | data element terminology sources | permissible values | permissible value descriptions | permissible value output codes | permissible value concept identifiers | permissible value concept names | permissible value terminology sources |
---|---|---|---|---|---|---|---|---|---|---|
AgeYrs | Age in years | C1510829;C0001779 | Age-Years;Age | UMLS;UMLS | ||||||
CaseContrlInd | Case control indicator | C0007328 | Case-Control Studies | UMLS | Case;Control;Unknown | Case;Control;Unknown | 1;2;999 | C1706256;C4553389;C0439673 | Clinical Study Case;Study Control;Unknown | UMLS;UMLS;UMLS |
More documentation to come... Basic pipeline is described below:
The MetaMap API code included is from Will J Roger's repository --> https://github.com/lhncbc/skr_web_python_api
Special thanks to Olga Vovk, Henry Ogoe, and Sofia Syed for their guidance, feedback, and testing of this package.
FAQs
This package allows you to load in a data dictionary and map cuis to defined fields using either the UMLS API or MetaMap API from NLM, or a Semantic Search pipeline using Pinecone vector database.
We found that data-dictionary-cui-mapping demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Create React App is officially deprecated due to React 19 issues and lack of maintenance—developers should switch to Vite or other modern alternatives.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.