data-spec-validator
Why
- To get rid of code snippet like these (... cumbersome and tedious validation)
def do_something(params):
val_a_must_int = params.get('a', 0)
val_b_must_be_non_empty_list = params.get('b', [])
val_c_might_be_none = params.get('c', None)
if type(val_a_must_int) != int:
raise XXX
if type(val_b_must_list) != list or len(val_b_must_be_non_empty_list) == 0:
raise XXX
if val_c_might_be_none is not None:
date_c = datetime.strptime(val_c_might_be_present, '%Y-%m-%d')
date_20000101 = datetime.date(2000, 1, 1)
date_20200101 = datetime.date(2020, 1, 1)
if not (date_20000101 <= date_c <= date_20200101):
raise XXX
...
Installation
pip install data-spec-validator
- Advance usage (decorator)
- The decorator function
dsv
may depend on Django
(support v3.0 or later) or djangorestframework
.
pip install data-spec-validator[decorator-dj] # Django Only
pip install data-spec-validator[decorator] # Django Rest Framework
Quick Example
- Do
validate_data_spec
directly wherever you like
from data_spec_validator.spec import INT, DIGIT_STR, ONE_OF, LIST_OF, Checker, CheckerOP, validate_data_spec
class SomeSpec:
field_a = Checker([INT])
field_b = Checker([DIGIT_STR], optional=True)
field_c = Checker([DIGIT_STR, INT], op=CheckerOP.ANY)
filed_d_array = Checker([LIST_OF], LIST_OF=int, alias='field_d[]', optional=True)
some_data = dict(field_a=4, field_b='3', field_c=1, field_dont_care=[5,6])
validate_data_spec(some_data, SomeSpec)
some_data = dict(field_a=4, field_c='1')
validate_data_spec(some_data, SomeSpec)
some_data = {
'field_a': 4,
'field_c': 1,
'field_d[]': [5, 6],
}
validate_data_spec(some_data, SomeSpec)
some_data = dict(field_a='4', field_c='1')
validate_data_spec(some_data, SomeSpec)
some_data = dict(field_a='4', field_c='1')
validate_data_spec(some_data, SomeSpec, nothrow=True)
class AnotherSpec:
field = Checker([ONE_OF], ONE_OF=[1, '2', [3, 4], {'5': 6}])
another_data = dict(field=[3, 4])
validate_data_spec(another_data, AnotherSpec)
another_data = dict(field='4')
validate_data_spec(another_data, AnotherSpec)
from data_spec_validator.spec import INT, STR, Checker, validate_data_spec
class SingleSpec:
f_a = Checker([INT])
f_b = Checker([STR])
multirow_data = [dict(f_a=1, f_b='1'), dict(f_a=2, f_b='2'), dict(f_a=3, f_b='3')]
validate_data_spec(multirow_data, SingleSpec, multirow=True)
Supported checks & sample usages (see test_spec.py
/test_class_type_spec.py
for more cases)
INT
int_field = Checker([INT])
or Checker[int]
FLOAT
float_field = Checker([FLOAT])
or Checker([float])
NUMBER
number_field = Checker([NUMBER])
STR
str_field = Checker([STR])
or Checker([str])
DIGIT_STR
digi_str_field = Checker([DIGIT_STR])
BOOL
bool_field = Checker([BOOL])
or Checker([bool])
DICT
dict_field = Checker([DICT])
or Checker([dict])
LIST
list_field = Checker([LIST])
or Checker([list])
DATE_OBJECT
date_obj_field = Checker([DATE_OBJECT])
or Checker([datetime.date])
DATETIME_OBJECT
datetime_obj_field = Checker([DATETIME_OBJECT])
or Checker([datetime.datetime])
NONE
none_field = Checker([NONE])
or Checker([type(None)])
JSON
json_field = Checker([JSON])
JSON_BOOL
json_bool_field = Checker([JSON_BOOL])
ONE_OF
one_of_field = Checker([ONE_OF], ONE_OF=['a', 'b', 'c'])
SPEC
spec_field = Checker([SPEC], SPEC=SomeSpecClass)
LIST_OF: Enforce LIST type validation as well
list_of_int_field = Checker([LIST_OF], LIST_OF=INT)
list_of_spec_field = Checker([LIST_OF], LIST_OF=SomeSpecClass)
LENGTH
length_field = Checker([LENGTH], LENGTH=dict(min=3, max=5))
AMOUNT
amount_field = Checker([AMOUNT])
AMOUNT_RANGE
amount_range_field = Checker([AMOUNT_RANGE], AMOUNT_RANGE=dict(min=-2.1, max=3.8))
DECIMAL_PLACE
decimal_place_field = Checker([DECIMAL_PLACE], DECIMAL_PLACE=4)
DATE
date_field = Checker([DATE])
DATE_RANGE
date_range_field = Checker([DATE_RANGE], DATE_RANGE=dict(min='2000-01-01', max='2010-12-31'))
EMAIL
email_field = Checker([EMAIL])
UUID
uuid_field = Checker([UUID])
or Checker([uuid.UUID])
REGEX
re_field = Checker([REGEX], REGEX=dict(pattern=r'^The'))
re_field = Checker([REGEX], REGEX=dict(pattern=r'watch out', method='match'))
COND_EXIST
If a exists, c must not exist, if b exists, a must exist, if c exists, a must not exist.
Practically, optional=True
will be configured in the most use cases, FMI, see test/test_spec.py
a = Checker([COND_EXIST], optional=True, COND_EXIST=dict(WITHOUT=['c']))
b = Checker([COND_EXIST], optional=True, COND_EXIST=dict(WITH=['a']))
c = Checker([COND_EXIST], optional=True, COND_EXIST=dict(WITHOUT=['a']))
Self-defined class type
class SomeClass:
pass
a = Checker([SomeClass])
- Decorate a method with
dsv
, the method must meet one of the following requirements.
- It's a view's member function, and the view has a WSGIRequest(
django.core.handlers.wsgi.WSGIRequest
) attribute. - It's a view's member function, and the 2nd argument of the method is a
rest_framework.request.Request
instance. - It's already decorated with
rest_framework.decorators import api_view
, the 1st argument is a rest_framework.request.Request
from rest_framework.decorators import api_view
from rest_framework.views import APIView
from data_spec_validator.decorator import dsv
from data_spec_validator.spec import UUID, EMAIL, Checker
class SomeViewSpec:
param_a = Checker([UUID])
param_b = Checker([EMAIL])
class SomeView(APIView):
@dsv(SomeViewSpec)
def get(self, request):
pass
@api_view(('POST',))
@dsv(SomeViewSpec)
def customer_create(request):
pass
@api_view(('POST',))
@dsv(SomeViewSpec, multirow=True)
def customer_create(request):
pass
- Decorate another method with
dsv_request_meta
can help you validate the META in request header.
Register Custom Spec Check & Validator
- Define custom CHECK constant (
gt_check
in this case) and write custom Validator(GreaterThanValidator
in this case)
gt_check = 'gt_check'
from data_spec_validator.spec.defines import BaseValidator
class GreaterThanValidator(BaseValidator):
name = gt_check
@staticmethod
def validate(value, extra, data):
criteria = extra.get(GreaterThanValidator.name)
return value > criteria, ValueError(f'{value} is not greater than {criteria}')
- Register custom check & validator into data_spec_validator
from data_spec_validator.spec import custom_spec, Checker, validate_data_spec
custom_spec.register(dict(gt_check=GreaterThanValidator()))
class GreaterThanSpec:
key = Checker(['gt_check'], GT_CHECK=10)
ok_data = dict(key=11)
validate_data_spec(ok_data, GreaterThanSpec)
nok_data = dict(key=9)
validate_data_spec(ok_data, GreaterThanSpec)
Message Level
- 2 modes (Default v.s. Vague), can be switched by calling
reset_msg_level(vague=True)
"field: XXX, reason: '3' is not a integer"
"field: XXX not well-formatted"
Feature: Strict Mode
- A spec class decorated with
dsv_feature(strict=True)
detects unexpected key/value in data
from data_spec_validator.spec import Checker, validate_data_spec, dsv_feature, BOOL
@dsv_feature(strict=True)
class StrictSpec:
a = Checker([BOOL])
ok_data = dict(a=True)
validate_data_spec(ok_data, StrictSpec)
nok_data = dict(a=True, b=1)
validate_data_spec(nok_data, StrictSpec)
Feature: Any Keys Set
- A spec class decorated with e.g.
dsv_feature(any_keys_set={...})
means that at least one key among a keys tuple from the set must exist.
from data_spec_validator.spec import Checker, validate_data_spec, dsv_feature, INT
@dsv_feature(any_keys_set={('a', 'b'), ('c', 'd')})
class _AnyKeysSetSpec:
a = Checker([INT], optional=True)
b = Checker([INT], optional=True)
c = Checker([INT], optional=True)
d = Checker([INT], optional=True)
validate_data_spec(dict(a=1, c=1, d=1), _AnyKeysSetSpec)
validate_data_spec(dict(a=1, c=1), _AnyKeysSetSpec)
validate_data_spec(dict(a=1, d=1), _AnyKeysSetSpec)
validate_data_spec(dict(b=1, c=1, d=1), _AnyKeysSetSpec)
validate_data_spec(dict(b=1, c=1), _AnyKeysSetSpec)
validate_data_spec(dict(b=1, d=1), _AnyKeysSetSpec)
validate_data_spec(dict(a=1, b=1, c=1), _AnyKeysSetSpec)
validate_data_spec(dict(a=1, b=1, d=1), _AnyKeysSetSpec)
validate_data_spec(dict(a=1, b=1, c=1, d=1), _AnyKeysSetSpec)
validate_data_spec(dict(a=1), _AnyKeysSetSpec)
validate_data_spec(dict(b=1), _AnyKeysSetSpec)
validate_data_spec(dict(c=1), _AnyKeysSetSpec)
validate_data_spec(dict(d=1), _AnyKeysSetSpec)
validate_data_spec(dict(e=1), _AnyKeysSetSpec)
Feature: Error Mode, i.e. ErrorMode.ALL, ErrorMode.MSE(default behavior)
NOTE 1: ErrorMode.MSE
stands for MOST-SIGNIFICANT-ERROR
NOTE 2: The validation results respect to the ErrorMode feature config on the OUTER-MOST spec. All nested specs
follow the OUTER-MOST spec configuration, for more reference, see test_spec.py:test_err_mode
from data_spec_validator.spec import Checker, validate_data_spec, dsv_feature, LENGTH, STR, AMOUNT, ErrorMode, INT, DIGIT_STR
@dsv_feature(err_mode=ErrorMode.ALL)
class _ErrModeAllSpec:
a = Checker([INT])
b = Checker([DIGIT_STR])
c = Checker([LENGTH, STR, AMOUNT], LENGTH=dict(min=3, max=5))
nok_data = dict(
a=True,
b='abc',
c='22',
)
validate_data_spec(nok_data, _ErrModeAllSpec)
"""
A DSVError is raised with 3 errors in args.
(TypeError('field: _ErrModeAllSpec.a, reason: True is not an integer',),
TypeError("field: _ErrModeAllSpec.b, reason: 'abc' is not a digit str",),
ValueError("field: _ErrModeAllSpec.c, reason: Length of '22' must be between 3 and 5",))
"""
Feature: Self-defined Spec name in error message
from data_spec_validator.spec import Checker, dsv_feature, validate_data_spec, INT
@dsv_feature(spec_name='CustomSpecName')
class _MySpec:
a = Checker([INT])
nok_data = dict(
a='abc',
)
validate_data_spec(nok_data, _MySpec)
"""
TypeError: field: CustomSpecName.a, reason: 'abc' is not an integer
"""
Test
python -m unittest test/*.*