Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

dataclass-type-validator

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

dataclass-type-validator

Dataclass Type Validator Library

  • 0.1.2
  • PyPI
  • Socket score

Maintainers
1

dataclass-type-validator

The dataclass-type-validator is a type validation library for the properties of dataclasses.dataclass using Python type hint information.

Installation

pip install dataclass-type-validator or add dataclass-type-validator line to requirements.txt

A Simple Example

Explicitly calling dataclass_type_validator from within your dataclass

from dataclasses import dataclass
from typing import List
from dataclass_type_validator import dataclass_type_validator
from dataclass_type_validator import TypeValidationError

@dataclass()
class User:
    id: int
    name: str
    friend_ids: List[int]

    def __post_init__(self):
        dataclass_type_validator(self)


# Valid User
User(id=10, name='John Smith', friend_ids=[1, 2])
# => User(id=10, name='John Smith', friend_ids=[1, 2])

# Invalid User
try:
    User(id='a', name=['John', 'Smith'], friend_ids=['a'])
except TypeValidationError as e:
    print(e)
# => TypeValidationError: Dataclass Type Validation (errors = {
#   'id': "must be an instance of <class 'int'>, but received <class 'str'>",
#   'name': "must be an instance of <class 'str'>, but received <class 'list'>",
#   'friend_ids': 'must be an instance of typing.List[int], but there are some errors:
#       ["must be an instance of <class \'int\'>, but received <class \'str\'>"]'})

The same, but using the class decorator instead

from dataclasses import dataclass
from typing import List
from dataclass_type_validator import dataclass_validate
from dataclass_type_validator import TypeValidationError

@dataclass_validate
@dataclass()
class User:
    id: int
    name: str
    friend_ids: List[int]


# Valid User
User(id=10, name='John Smith', friend_ids=[1, 2])
# => User(id=10, name='John Smith', friend_ids=[1, 2])

# Invalid User
try:
    User(id='a', name=['John', 'Smith'], friend_ids=['a'])
except TypeValidationError as e:
    print(e)
# => TypeValidationError: Dataclass Type Validation (errors = {
#   'id': "must be an instance of <class 'int'>, but received <class 'str'>",
#   'name': "must be an instance of <class 'str'>, but received <class 'list'>",
#   'friend_ids': 'must be an instance of typing.List[int], but there are some errors:
#       ["must be an instance of <class \'int\'>, but received <class \'str\'>"]'})

You can also pass the strict param (which defaults to False) to the decorator:

@dataclass_validate(strict=True)
@dataclass(frozen=True)
class SomeList:
    values: List[str]

# Invalid item contained in typed List
try:
    SomeList(values=["one", "two", 3])
except TypeValidationError as e:
    print(e)
# => TypeValidationError: Dataclass Type Validation Error (errors = {
#   'x': 'must be an instance of typing.List[str], but there are some errors: 
#       ["must be an instance of <class \'str\'>, but received <class \'int\'>"]'})

You can also pass the before_post_init param (which defaults to False) to the decorator, to force the type validation to occur before __post_init__() is called. This can be used to ensure the types of the field values have been validated before your higher-level semantic validation is performed in __post_init__().

@dataclass_validate(before_post_init=True)
@dataclass
class User:
    id: int
    name: str

    def __post_init__(self):
        # types of id and name have already been checked before this is called.
        # Otherwise, the following check will throw a TypeError if user passed 
        # `id` as a string or other type that cannot be compared to int.
        if id < 1:
            raise ValueError("superuser not allowed")

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc