New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

dataclocklib

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

dataclocklib

Data clock charts using matplotlib.

  • 0.2.0
  • PyPI
  • Socket score

Maintainers
1

Data Clock Visualisation Library

PyPI - Version PyPI - Downloads Python Version from PEP 621 TOML GitHub Actions Workflow Status GitHub deployments

Introduction

This library allows the user to create data clock graphs, using the matplotlib Python library.

Data clocks visually summarise temporal data in two dimensions, revealing seasonal or cyclical patterns and trends over time. A data clock is a circular chart that divides a larger unit of time into rings and subdivides it by a smaller unit of time into wedges, creating a set of temporal bins.

These temporal bins are symbolised using graduated colors that correspond to a count or aggregated value taking place in each time period.

The table below details the currently supported chart modes and the corresponding rings and wedges:

ModeRingsWedgesDescription
YEAR_MONTHYearsMonthsYears / January - December.
YEAR_WEEKYearsWeeksYears / weeks 1 - 52.
WEEK_DAYWeeksDays of the weekWeeks 1 - 52 / Monday - Sunday.
DOW_HOURDays of the weekHour of dayMonday - Sunday / 24 hours.
DAY_HOURDaysHour of dayDays 1 - 356 / 24 hours.

The full documentation can be viewed on the project GitHub Page.

Example charts

Chart examples have been generated using UK Department for Transport data 2010 - 2015.

import pandas as pd
from dataclocklib.charts import dataclock

data = pd.read_parquet(
    "https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)

chart_data, fig, ax = dataclock(
    data=data,
    date_column="Date_Time",
    mode="DOW_HOUR",
    spine_color="darkslategrey",
    grid_color="black",
    default_text=False
)

Data clock chart

import pandas as pd
from dataclocklib.charts import dataclock

data = pd.read_parquet(
    "https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)

chart_data, fig, ax = dataclock(
    data=data,
    date_column="Date_Time",
    mode="DOW_HOUR",
    spine_color="darkslategrey",
    grid_color="black",
    default_text=True
)

Data clock chart

import pandas as pd
from dataclocklib.charts import dataclock

data = pd.read_parquet(
    "https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)

chart_data, fig, ax = dataclock(
    data=data,
    date_column="Date_Time",
    mode="DOW_HOUR",
    default_text=True,
    spine_color="darkslategrey",
    grid_color="black",
    chart_title="**CUSTOM TITLE**",
    chart_subtitle="**CUSTOM SUBTITLE**",
    chart_period="**CUSTOM PERIOD**",
    chart_source="Source: UK Department for Transport",
    dpi=150
)

Data clock chart

import pandas as pd
from dataclocklib.charts import dataclock

data = pd.read_parquet(
    "https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)

chart_data, fig, ax = dataclock(
    data=data.query("Date_Time.dt.year.eq(2010)"),
    date_column="Date_Time",
    agg_column="Number_of_Casualties",
    agg="sum",
    mode="DOW_HOUR",
    cmap_name="X26",
    cmap_reverse=True,
    spine_color="honeydew",
    grid_color="honeydew",
    default_text=True,
    chart_title="UK Traffic Accident Casualties",
    chart_subtitle=None,
    chart_period="Period: 2010",
    chart_source="Source: https://data.dft.gov.uk/road-accidents-safety-data/dft-road-casualty-statistics-collision-last-5-years.csv",
    dpi=300
)

Data clock chart

Installation

You can install using pip:

python -m pip install dataclocklib

To install from GitHub use:

python -m pip install git+https://github.com/andyrids/dataclocklib.git

Development Installation

Astral uv is used as the Python package manager. To install uv see the installation guide @ uv documentation.

Clone the repository:

git clone git@github.com:andyrids/dataclocklib.git
cd dataclocklib

Sync the dependencies, including the dev dependency group and optional dependencies with uv:

uv sync --all-extras

Activate the virtual environment:

. .venv/bin/activate

Sphinx documentation

cd docs
make html

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc