![Oracle Drags Its Feet in the JavaScript Trademark Dispute](https://cdn.sanity.io/images/cgdhsj6q/production/919c3b22c24f93884c548d60cbb338e819ff2435-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Oracle Drags Its Feet in the JavaScript Trademark Dispute
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
This library allows the user to create data clock graphs, using the matplotlib Python library.
Data clocks visually summarise temporal data in two dimensions, revealing seasonal or cyclical patterns and trends over time. A data clock is a circular chart that divides a larger unit of time into rings and subdivides it by a smaller unit of time into wedges, creating a set of temporal bins.
These temporal bins are symbolised using graduated colors that correspond to a count or aggregated value taking place in each time period.
The table below details the currently supported chart modes and the corresponding rings and wedges:
Mode | Rings | Wedges | Description |
---|---|---|---|
YEAR_MONTH | Years | Months | Years / January - December. |
YEAR_WEEK | Years | Weeks | Years / weeks 1 - 52. |
WEEK_DAY | Weeks | Days of the week | Weeks 1 - 52 / Monday - Sunday. |
DOW_HOUR | Days of the week | Hour of day | Monday - Sunday / 24 hours. |
DAY_HOUR | Days | Hour of day | Days 1 - 356 / 24 hours. |
The full documentation can be viewed on the project GitHub Page.
Chart examples have been generated using UK Department for Transport data 2010 - 2015.
import pandas as pd
from dataclocklib.charts import dataclock
data = pd.read_parquet(
"https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)
chart_data, fig, ax = dataclock(
data=data,
date_column="Date_Time",
mode="DOW_HOUR",
spine_color="darkslategrey",
grid_color="black",
default_text=False
)
import pandas as pd
from dataclocklib.charts import dataclock
data = pd.read_parquet(
"https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)
chart_data, fig, ax = dataclock(
data=data,
date_column="Date_Time",
mode="DOW_HOUR",
spine_color="darkslategrey",
grid_color="black",
default_text=True
)
import pandas as pd
from dataclocklib.charts import dataclock
data = pd.read_parquet(
"https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)
chart_data, fig, ax = dataclock(
data=data,
date_column="Date_Time",
mode="DOW_HOUR",
default_text=True,
spine_color="darkslategrey",
grid_color="black",
chart_title="**CUSTOM TITLE**",
chart_subtitle="**CUSTOM SUBTITLE**",
chart_period="**CUSTOM PERIOD**",
chart_source="Source: UK Department for Transport",
dpi=150
)
import pandas as pd
from dataclocklib.charts import dataclock
data = pd.read_parquet(
"https://raw.githubusercontent.com/andyrids/dataclocklib/main/tests/data/traffic_data.parquet.gzip"
)
chart_data, fig, ax = dataclock(
data=data.query("Date_Time.dt.year.eq(2010)"),
date_column="Date_Time",
agg_column="Number_of_Casualties",
agg="sum",
mode="DOW_HOUR",
cmap_name="X26",
cmap_reverse=True,
spine_color="honeydew",
grid_color="honeydew",
default_text=True,
chart_title="UK Traffic Accident Casualties",
chart_subtitle=None,
chart_period="Period: 2010",
chart_source="Source: https://data.dft.gov.uk/road-accidents-safety-data/dft-road-casualty-statistics-collision-last-5-years.csv",
dpi=300
)
You can install using pip
:
python -m pip install dataclocklib
To install from GitHub use:
python -m pip install git+https://github.com/andyrids/dataclocklib.git
Astral uv is used as the Python package manager. To install uv see the installation guide @ uv documentation.
Clone the repository:
git clone git@github.com:andyrids/dataclocklib.git
cd dataclocklib
Sync the dependencies, including the dev dependency group and optional dependencies with uv:
uv sync --all-extras
Activate the virtual environment:
. .venv/bin/activate
cd docs
make html
FAQs
Data clock charts using matplotlib.
We found that dataclocklib demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.