datasketch: Big Data Looks Small
.. image:: https://static.pepy.tech/badge/datasketch/month
:target: https://pepy.tech/project/datasketch
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.598238.svg
:target: https://zenodo.org/doi/10.5281/zenodo.598238
datasketch gives you probabilistic data structures that can process and
search very large amount of data super fast, with little loss of
accuracy.
This package contains the following data sketches:
+-------------------------+-----------------------------------------------+
| Data Sketch | Usage |
+=========================+===============================================+
| MinHash_ | estimate Jaccard similarity and cardinality |
+-------------------------+-----------------------------------------------+
| Weighted MinHash_ | estimate weighted Jaccard similarity |
+-------------------------+-----------------------------------------------+
| HyperLogLog_ | estimate cardinality |
+-------------------------+-----------------------------------------------+
| HyperLogLog++_ | estimate cardinality |
+-------------------------+-----------------------------------------------+
The following indexes for data sketches are provided to support
sub-linear query time:
+---------------------------+-----------------------------+------------------------+
| Index | For Data Sketch | Supported Query Type |
+===========================+=============================+========================+
| MinHash LSH_ | MinHash, Weighted MinHash | Jaccard Threshold |
+---------------------------+-----------------------------+------------------------+
| LSHBloom_ | MinHash, Weighted MinHash | Jaccard Threshold |
+---------------------------+-----------------------------+------------------------+
| MinHash LSH Forest_ | MinHash, Weighted MinHash | Jaccard Top-K |
+---------------------------+-----------------------------+------------------------+
| MinHash LSH Ensemble_ | MinHash | Containment Threshold |
+---------------------------+-----------------------------+------------------------+
| HNSW_ | Any | Custom Metric Top-K |
+---------------------------+-----------------------------+------------------------+
datasketch must be used with Python 3.9 or above, NumPy 1.11 or above, and Scipy.
Note that MinHash LSH_ and MinHash LSH Ensemble_ also support Redis and Cassandra
storage layer (see MinHash LSH at Scale_).
Install
To install datasketch using pip:
.. code-block:: bash
pip install datasketch
This will also install NumPy as dependency.
To install with Redis dependency:
.. code-block:: bash
pip install datasketch[redis]
To install with Cassandra dependency:
.. code-block:: bash
pip install datasketch[cassandra]
To install with Bloom filter dependency:
.. code-block:: bash
pip install datasketch[bloom]
.. _MinHash: https://ekzhu.github.io/datasketch/minhash.html
.. _Weighted MinHash: https://ekzhu.github.io/datasketch/weightedminhash.html
.. _HyperLogLog: https://ekzhu.github.io/datasketch/hyperloglog.html
.. _HyperLogLog++: https://ekzhu.github.io/datasketch/hyperloglog.html#hyperloglog-plusplus
.. _MinHash LSH: https://ekzhu.github.io/datasketch/lsh.html
.. _MinHash LSH Forest: https://ekzhu.github.io/datasketch/lshforest.html
.. _MinHash LSH Ensemble: https://ekzhu.github.io/datasketch/lshensemble.html
.. _LSHBloom: https://ekzhu.github.io/datasketch/lshbloom.html
.. _Minhash LSH at Scale: http://ekzhu.github.io/datasketch/lsh.html#minhash-lsh-at-scale
.. _HNSW: https://ekzhu.github.io/datasketch/documentation.html#hnsw
Contributing
We welcome contributions from everyone. Whether you're fixing bugs, adding features, improving documentation, or helping with tests, your contributions are valuable.
Development Setup
^^^^^^^^^^^^^^^^^
The project uses uv for fast and reliable Python package management. Follow these steps to set up your development environment:
-
Install uv: Follow the official installation guide at https://docs.astral.sh/uv/getting-started/installation/
-
Clone the repository:
.. code-block:: bash
git clone https://github.com/ekzhu/datasketch.git
cd datasketch
-
Set up the environment:
.. code-block:: bash
# Create a virtual environment
# (Optional: specify Python version with --python 3.x)
uv venv
# Activate the virtual environment (optional, uv run commands work without it)
source .venv/bin/activate
# Install all dependencies
uv sync
-
Verify installation:
.. code-block:: bash
# Run tests to ensure everything works
uv run pytest
-
Optional dependencies (for specific development needs):
.. code-block:: bash
# For testing
uv sync --extra test
# For Cassandra support
uv sync --extra cassandra
# For Redis support
uv sync --extra redis
# For all extras
uv sync --all-extras
Learn more about uv at https://docs.astral.sh/uv/
Development Workflow
^^^^^^^^^^^^^^^^^^^^
-
Fork the repository on GitHub if you haven't already.
-
Create a feature branch for your changes:
.. code-block:: bash
git checkout -b feature/your-feature-name
# Or for bug fixes:
git checkout -b fix/issue-description
-
Make your changes following the project's coding standards.
-
Run the tests to ensure nothing is broken:
.. code-block:: bash
uv run pytest
-
Check code quality with ruff:
.. code-block:: bash
# Check for issues
uvx ruff check .
# Auto-fix formatting issues
uvx ruff format .
-
Commit your changes with a clear, descriptive commit message:
.. code-block:: bash
git commit -m "Add feature: brief description of what was changed"
-
Push to your fork and create a pull request on GitHub:
.. code-block:: bash
git push origin your-branch-name
-
Respond to feedback from maintainers and iterate on your changes.
Guidelines
^^^^^^^^^^
- Follow PEP 8 style guidelines
- Write tests for new features
- Update documentation as needed
- Keep commits focused and atomic
- Be respectful in discussions
For more information, check the GitHub issues <https://github.com/ekzhu/datasketch/issues>_ for current priorities or areas needing help. You can also join the discussion on project roadmap and priorities <https://github.com/ekzhu/datasketch/discussions/252>_.